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1. Introduction

At TeV colliders, electroweak radiative corrections are strongly enhanced by logarithms

of the type ln(Q2/M2
W,Z) [1 – 4]. These logarithmic corrections affect every reaction that

involves electroweakly interacting particles and is characterized by scattering energies Q ≫
MW,Z. The impact of the enhanced electroweak corrections at high-energy colliders has

been investigated both in complete one-loop calculations and in logarithmic approximation

for several specific reactions, including gauge-boson pair production at the ILC [4, 5] and

the LHC [6], gauge-boson scattering [2, 7], fermion-pair production in e+e− collisions [3, 8],

Drell-Yan processes at the LHC [9], heavy-quark production [10], single-gauge-boson plus

jet production at the LHC [11], Higgs production in vector-boson fusion at the LHC [12],

and three-jet production in e+e− collisions [13]. The results of these studies demonstrate

that at energies Q ∼ 1TeV the size of the electroweak corrections can reach, depending on

the process, up to tens of per cent at one loop and several per cent at two loops.

At high energies, the dominant effects can be described in a systematic way by treat-

ing the electroweak corrections in the asymptotic limit Q/MW,Z → ∞, where all masses

of order MW are formally handled as infinitesimally small parameters. In this limit, the

electroweak corrections appear as a sequence of logarithms of the form αl lnj
(

Q2/M2
W,Z

)

,

with j ≤ 2l, which diverge asymptotically. These logarithms have a two-fold origin. The

renormalization of ultraviolet (UV) singularities at the scale µR . MW,Z yields terms of

the form ln(Q2/µ2
R) and, in addition, the interactions of the initial- and final-state parti-

cles with soft and/or collinear gauge bosons give rise to ln(Q2/M2
W,Z) terms that represent

mass singularities.

As pointed out in ref. [14], soft and collinear electroweak logarithms are present not

only in those physical observables that are exclusive with respect to real radiation of Z and

W bosons, but even in fully inclusive observables [14, 15]. However, there is no need to

combine corrections resulting from virtual and real Z/W bosons in the same observable.

Thus, in this paper we will consider only exclusive observables, which do not include real

Z/W-boson emission and contain only virtual contributions.

Since they originate from UV, soft, and collinear singularities, electroweak logarithmic

corrections have universal properties that can be studied in a process-independent way

and reveal interesting analogies between QED, QCD, and electroweak interactions. At one

loop, the leading logarithms (LLs) and next-to-leading logarithms (NLLs) factorize and are

described by a general formula that applies to arbitrary Standard-Model processes [16, 17].
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The properties of electroweak logarithmic corrections beyond one loop can be investigated

by means of infrared evolution equations that describe the electroweak interactions in

terms of two regimes corresponding to SU(2) × U(1) and Uem(1) symmetric gauge theo-

ries [18 – 22]. This approach makes use of resummation techniques that were derived in

the context of symmetric gauge theories (QED, QCD), thereby assuming that electroweak

symmetry-breaking effects other than the splitting into two symmetric regimes are negligi-

ble in next-to-next-to-leading logarithmic (NNLL) approximation. An alternative method,

which also relies on factorization and exponentiation of the logarithmic corrections, is based

on soft-collinear effective theory [23]. Using this method, ln(Q2/M2
W,Z) corrections to the

Sudakov form factor for massless and massive fermions have been calculated and used to

compute electroweak corrections to four-fermion processes at the LHC [24, 25]. Alter-

natively, the electroweak logarithms can be extracted explicitly from Feynman diagrams

at two loops [26 – 32]. Calculations of this type explicitly implement all aspects of elec-

troweak symmetry breaking through the Feynman rules and thus provide a strong check

of the results obtained via evolution equations or effective theories.

So far, all existing diagrammatic results are in agreement with the resummation pre-

scriptions. However, up to now only a small subset of logarithms and processes has been

computed explicitly at two loops: while the LLs [26] and the angular-dependent subset

of the NLLs [27] have been derived for arbitrary processes, complete diagrammatic cal-

culations at (or beyond) the NLL level exist only for matrix elements involving massless

external fermions [28 – 32]. In the literature, no explicit 2-loop NLL calculation exists for

reactions involving massive scattering particles.

In this paper we derive the two-loop NLL corrections for general n-fermion processes

f1f2 → f3 . . . fn involving an arbitrary number of massless and massive fermions, i.e.

leptons, light or heavy quarks. We consider the limit where all kinematical invariants are

of order Q2 ≫ M2
W,Z, and the top mass — as well as the Higgs mass — is of the same order

as MW,Z. Apart from the top quark all other fermions, including bottom quarks, are treated

as massless particles. Soft and collinear singularities from virtual photons are regularized

dimensionally and arise as ǫ-poles in D = 4 − 2ǫ dimensions. For consistency, the same

power counting is applied to ln(Q2/M2
W) and 1/ǫ singularities. Thus, in NLL approximation

we include all ǫ−k lnj−k(Q2/M2
W) terms with total power j = 2, 1 at one loop and j = 4, 3 at

two loops. We explicitly show that the photonic singularities can be factorized in a gauge-

invariant electromagnetic term, in such a way that the remaining part of the corrections —

which is finite, gauge invariant, and does not depend on the scheme adopted to regularize

photonic singularities — contains only ln(Q2/M2
W) terms. The divergences contained in

the electromagnetic term cancel if real-photon emission is included.

We utilize the technique that we introduced in ref. [32] to derive the NLL two-loop

corrections for massless n-fermion processes. This method is based on collinear Ward iden-

tities which permit to factorize the soft-collinear contributions from the n-fermion tree-level

amplitude and isolate them in process-independent two-loop integrals. The latter are eval-

uated to NLL accuracy using an automatized algorithm based on the sector-decomposition

technique [33] and, alternatively, the method of expansion by regions combined with Mellin-

Barnes representations (see ref. [31] and references therein).
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The treatment of n-fermion processes that involve massive top quarks implies two new

aspects: additional Feynman diagrams resulting from Yukawa interactions, and top-mass

terms that render the loop integrals more involved. The latter is the one that requires more

effort from the calculational point of view, since every topology has to be evaluated for sev-

eral different combinations of massive/massless internal and external lines. This part of the

calculation was automatized in the framework of the above-mentioned algorithms, thereby

doing an important step towards a complete NLL analysis of all processes that involve mas-

sive particles. A brief summary of the results presented here was anticipated in ref. [34].

The paper is organized as follows. Section 2 contains definitions and conventions used

in the calculation. In section 3 we review the techniques used to extract UV and mass

singularities for the case of massless fermion scattering [32] and extend them to the case

of massive fermions. The one-loop counterterms and explicit results for the renormalized

one-loop amplitude are given in section 4. The complete two-loop results are presented

in section 5 including a discussion of the Yukawa-coupling contributions and the two-loop

renormalization. Section 6 is devoted to the discussion of our final results. Explicit re-

sults for the various contributing one- and two-loop diagrams are presented in appendix A.

Further appendices contain the definition of the loop integrals (appendix B) and relations

between them (appendix C). Specific results for four-particle processes involving external

fermions and gluons, including a comparison with the results of refs. [24, 25], can be found

in appendix D.

2. Definitions and conventions

The calculation is based on the formalism introduced in ref. [32] for massless fermion scat-

tering. Here we summarize the most important conventions and introduce new defini-

tions that are needed to describe massive fermions. For more details we refer to sec-

tion 2 of ref. [32].

We consider a generic n → 0 process involving an even number n of polarized

fermionic particles,

ϕ1(p1) . . . ϕn(pn) → 0. (2.1)

The symbols ϕi represent n/2 antifermions and n/2 fermions: ϕi = f̄κi
σi

for i = 1, . . . , n/2

and ϕi = fκi
σi

for i = n/2+ 1, . . . , n. The indices κi = R,L and σi characterize the chirality

(see below) and the fermion type (fσi
= νe, e, . . . , τ, u, d, . . . , t), respectively. All external

momenta are incoming and on shell, p2
k = m2

k. Apart from the top quarks, all other

fermions (including bottom quarks) are treated as massless particles.

The matrix element for the process (2.1) reads

Mϕ1...ϕn =





n/2
∏

i=1

v̄(pi, κi)



Gϕ
1
...ϕ

n(p1, . . . , pn)





n∏

j=n/2+1

u(pj, κj)



 , (2.2)

where Gϕ
1
...ϕ

n is the corresponding truncated Green function. The spinors fulfil the

Dirac equation,

(/p − m)u(p, κ) = 0, (/p + m)v(p, κ) = 0, (2.3)
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and the argument κ denotes their chirality. More precisely, the polarization states κ = R,L

are defined in such a way that in the massless limit the spinors are eigenstates of the

chiral projectors

ωR = ω̄L =
1

2
(1 + γ5), ωL = ω̄R =

1

2
(1 − γ5), (2.4)

i.e.

ωρu(p, κ) = δκρu(p, κ) + O
(

m

p0
u

)

, ωρv(p, κ) = δκρv(p, κ) + O
(

m

p0
v

)

(2.5)

for m/p0 ≪ 1. While massless spinors are exact eigenstates of the chiral projectors, in the

massive case the spinors are constructed by means of helicity projectors

ΩR = Ω̂L =
1

2
(1 + γ5/r), ΩL = Ω̂R =

1

2
(1 − γ5/r) (2.6)

where

rµ = ± 1

m

(

|~p|, p0 ~p

|~p|

)

, for sign(p0) = ±1, (2.7)

with (rp) = 0, r2 = −1 and

Ωρu(p, κ) = δκρu(p, κ), Ω̂ρv(p, κ) = δκρv(p, κ). (2.8)

For m/p0 → 0, we have rµ → pµ/m, and the spinors satisfy (2.5) in the high-energy limit.

Note that in the case of antifermions, chirality and helicity play the opposite role, and we

always use chirality to label the spinors.

The amplitudes for physical scattering processes, i.e. 2 → n − 2 reactions, are easily

obtained from our results for n → 0 reactions using crossing symmetry.

2.1 Perturbative and asymptotic expansions

For the perturbative expansion of matrix elements we write

M =
∞∑

l=0

Ml, Ml =
(αǫ

4π

)l
M̃l, αǫ =

(
4πµ2

D

eγEQ2

)ǫ

α, (2.9)

where α = e2/(4π) and in D = 4 − 2ǫ dimensions we include in the definition of αǫ a

normalization factor depending on ǫ, the scale µD of dimensional regularization, and the

characteristic energy Q of the scattering process.

The electroweak corrections are evaluated in the region where all kinematical invari-

ants, rj...k = (pj + · · ·+pk)
2, are much larger than the squared masses of the heavy particles

that enter the loops,

|rj...k| ∼ Q2 ≫ M2
W ∼ M2

Z ∼ m2
t ∼ M2

H. (2.10)

In this region, the electroweak corrections are dominated by mass-singular logarithms,

L = ln

(
Q2

M2
W

)

, (2.11)
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and logarithms of UV origin. Mass singularities that originate from soft and collinear

massless photons and UV singularities are regularized dimensionally and give rise to 1/ǫ

poles. The amplitudes are computed as series in L and ǫ, classifying the terms ǫnLm+n

according to the total power m of logarithms L and 1/ǫ poles. At l loops, terms with

m = 2l, 2l − 1, . . . are denoted as leading logarithms (LLs), next-to-leading logarithms

(NLLs), and so on. The calculation is performed in NLL approximation expanding the

one- and two-loop terms up to order ǫ2 and ǫ0, respectively,

M1
NLL
=

2∑

m=1

2∑

n=−m

M1,m,n ǫnLm+n, M2
NLL
=

4∑

m=3

0∑

n=−m

M2,m,n ǫnLm+n. (2.12)

Since the loop corrections depend on various masses, MW ∼ MZ ∼ mt ∼ MH, and different

invariants rjk, the coefficients Ml,m,n in (2.12) involve logarithms of type1

li = ln

(
M2

i

M2
W

)

, ljk = ln

(−rjk − i0

Q2

)

for j 6= k. (2.13)

For convenience we also define ljj = 0 and

Lt = ln

(
Q2

m2
t

)

. (2.14)

To distinguish terms associated with massless and massive fermions we use the symbols

δi,t =

{

1, mi = mt

0, mi = 0

}

, δi,0 =

{

1, mi = 0

0, mi = mt

}

. (2.15)

Mass-suppressed corrections of order M2
W/Q2 are systematically neglected.

2.2 Gauge and Yukawa couplings

The generators associated with the gauge bosons V = A,Z,W± are related to the weak

isospin generators T i, the hypercharge Y , and the electromagnetic charge Q through

eIW±

=
g2√
2

(
T 1 ± iT 2

)
, eIA = −eQ = −g2sWT 3 − g1cW

Y

2
,

eIZ = g2cWT 3 − g1sW

Y

2
=

g2

cW

T 3 − e
sW

cW

Q, (2.16)

where cW = cos θw and sW = sin θw denote the sine and cosine of the weak mixing angle,

and g1 and g2 are the coupling constants associated with the U(1) and SU(2) groups,

respectively. The generators (2.16) obey the commutation relations

e
[
IV1 , IV2

]
= ig2

∑

V3=A,Z,W±

εV1V2V3I V̄3 , (2.17)

1This dependence only appears at the next-to-leading level, i.e. for m = 2l − 1.
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where V̄ denotes the complex conjugate of V and the ε-tensor is defined in ref. [32]. The

SU(2) × U(1) Casimir operator reads

∑

V =A,Z,W±

I V̄ IV =
g2
1

e2

(
Y

2

)2

+
g2
2

e2
C, with C =

3∑

i=1

(T i)2. (2.18)

The gauge-boson masses, the vacuum expectation value v, and the couplings fulfil

MW± =
1

2
g2v, MZ =

1

2cW

g2v, cW =
MW

MZ
, cWg1YΦ = sWg2, (2.19)

where YΦ is the hypercharge of the Higgs doublet. Leaving YΦ as a free parameter and

identifying e = cWg1, the Gell-Mann-Nishijima relation, which determines the hypercharges

of the fermions, reads Q = Y/2 + YΦT 3.

The Feynman rules for the vector-boson-fermion-antifermion vertices read

V µ

f̄σ′

fσ

= ieγµ
∑

κ=R,L

ωκIV
fκ

σ′f
κ
σ

, (2.20)

where IV
fκ

σ′f
κ
σ

denote the SU(2) × U(1) generators in the fundamental (κ = L) or trivial

(κ = R) representation. The chiral projectors ωκ in (2.20) can easily be shifted along the

fermionic lines using anticommutation relations2 until they meet the spinor of an external

fermion or antifermion and can be eliminated using (2.5).

It is convenient to adopt a notation that describes the interactions of fermions and

antifermions in a generic way. To this end, for a generic incoming particle ϕi = fκi
σ or f̄κi

σ ,

we define

IV
ϕ′′

i ϕ′
i
=







IV
f

κi
σ′′f

κi
σ′

for ϕi = fκi
σ

IV
f̄

κi
σ′′ f̄

κi
σ′

= −IV
f

κi
σ′ f

κi
σ′′

for ϕi = f̄κi
σ

. (2.21)

With this notation the interaction of a gauge boson V with incoming fermions and

antifermions yields

i(/pi
+ /q + mi)

(pi + q)2 − m2
i

ieγµIV
ϕ′

iϕi
u(pi, κi) and v̄(pi, κi)ieγ

µIV
ϕ′

iϕi

i(/pi
+ /q − mi)

(pi + q)2 − m2
i

. (2.22)

Similar expressions are obtained for multiple gauge-boson interactions. Apart from the

spinors and the reversed order of the Dirac matrices, these expressions differ only in the

sign of the mass terms in the Dirac propagators.3 In practice we perform the calculations

2In the high-energy NLL approximation diagrams involving chiral anomalies are irrelevant. Thus we can

use {γµ, γ5} = 0 in D = 4 − 2ǫ dimensions.
3For antifermions the negative sign in the coupling (2.21) compensates the negative sign (of slashed

momenta) due to the opposite fermion and momentum flow. This yields −(−/pi
− /q + mi) = (/pi

+ /q − mi).
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assuming that certain legs (i, j, . . . ) are incoming fermions and we find that the results

are independent of the sign of the mass terms in the propagators (only squared mass

terms give rise to unsuppressed contributions). Thus, the results are directly applicable

to fermions and antifermions.

The Feynman rules for the scalar-fermion-antifermion vertices read

Φ

f̄σ′

fσ

= i
(

ωRGΦ
fL

σ′f
R
σ

+ ωLGΦ
fR

σ′f
L
σ

)

, (2.23)

where Φ = H,χ, φ±. Unitarity implies the following relation between left- and right-handed

coupling matrices:

GΦ
fR

σ′f
L
σ

=
(

GΦ+

fL
σ fR

σ′

)∗

. (2.24)

We consider only contributions proportional to the top-quark Yukawa coupling,

λt =
g2mt√
2MW

, (2.25)

and neglect the bottom-quark mass. The non-vanishing components of the right-handed

coupling matrix read

GH
tLtR = − λt√

2
, Gχ

tLtR
= i

λt√
2
, Gφ−

bLtR
= λt. (2.26)

In analogy with (2.21), we define

GΦ
ϕ′′

i ϕ′
i
=







GΦ
fL

σ′′f
R

σ′
for ϕi = fR

σ

GΦ
f̄L

σ′′ f̄
R

σ′
= −GΦ

fR

σ′f
L

σ′′
for ϕi = f̄R

σ

, (2.27)

and similarly for R ↔ L. With this notation the interaction of a boson Φ with incoming

fermions ϕi = fκi
σ and antifermions ϕi = f̄κi

σ yields similar expressions as in the case of

gauge interactions (2.22),

i(/pi
+ /q + mi)

(pi + q)2 − m2
i

iGΦ
ϕ′

iϕi
u(pi, κi) and v̄(pi, κi)iG

Φ
ϕ′

iϕi

i(/pi
+ /q − mi)

(pi + q)2 − m2
i

. (2.28)

In the case of light (anti)fermions (ϕi =lepton or quark of the first two generations), the

subsequent interaction with gauge bosons V1, V2, V3 yields coupling factors IV3

ϕ′′′
i ϕ′′

i
IV2

ϕ′′
i ϕ′

i
IV1

ϕ′
iϕi

,

where the representation of all generators IV corresponds to the chirality κi given by the

spinor of the external particle ϕi [see (2.21)]. For quarks of the third generation (ϕi =top

or bottom), due to Yukawa interactions and top-mass terms in the fermion propagators,

also couplings with opposite chirality contribute. These are denoted as

ÎV
ϕ′′

i ϕ′
i
= IV

ϕ′′
i ϕ′

i

∣
∣
∣
R↔L

, ĜΦ
ϕ′′

i ϕ′
i
= GΦ

ϕ′′
i ϕ′

i

∣
∣
∣
R↔L

. (2.29)
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For instance, the subsequent emission of scalars and gauge bosons Φ1, V2,Φ3 along a heavy-

quark line yields coupling factors ĜΦ3

ϕ′′′
i ϕ′′

i
ÎV2

ϕ′′
i ϕ′

i
GΦ1

ϕ′
iϕi

.

In our results the matrix elements (2.2) are often abbreviated as

M ≡ Mϕ1...ϕn , (2.30)

and when they are multiplied by gauge- and Yukawa-coupling matrices we write

MIV1

k =
∑

ϕ′
k

Mϕ1...ϕ′
k...ϕnIV1

ϕ′
kϕk

, MGΦ1

k =
∑

ϕ′
k

Mϕ1...ϕ′
k ...ϕnGΦ1

ϕ′
kϕk

,

MGΦ1

k IV2

k =
∑

ϕ′
k,ϕ′′

k

Mϕ1...ϕ′′
k
...ϕnGΦ1

ϕ′′
kϕ′

k
IV2

ϕ′
kϕk

, etc. (2.31)

Similar shorthands are used for the coupling matrices (2.29). Global gauge invariance

implies the relation

ÎV
k GΦi

k − GΦi

k IV
k =

∑

Φj=H,χ,φ±

G
Φj

k IV
ΦjΦi

(2.32)

between combinations of gauge and Yukawa couplings as well as the charge-

conservation identity

M
n∑

k=1

IV
k = 0, (2.33)

which is fulfilled up to mass-suppressed terms in the high-energy limit. In (2.32), IV
ΦjΦi

denotes the SU(2)×U(1) generators for the Higgs doublet, which enter the gauge couplings

of the Higgs boson.

3. Treatment of ultraviolet and mass singularities

Large logarithms and 1/ǫ poles originate from UV and mass singularities. These contri-

butions can be extracted from one- and two-loop Feynman diagrams within the ’t Hooft-

Feynman gauge, using the technique introduced in ref. [32]. In section 3.1 we review this

method for the case of massless fermion scattering. The new aspects that emerge in the

presence of massive fermions are discussed in section 3.2. Finally, in section 3.3, we report

on a calculation of the fermionic form factor as a check of the validity of our methods.

3.1 Massless fermions

Here we give a concise summary of the method presented in ref. [32]. For a detailed

discussion we refer to the original paper.

3.1.1 Origin of mass singularities

Mass singularities appear in loop diagrams involving soft and/or collinear gauge bosons

that couple to external legs. At one loop, the mass singularities of the n-fermion amplitude

– 9 –
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originate from diagrams of the type

i

V

, (3.1)

where an electroweak gauge boson, V = A,Z,W±, couples to one of the external fermions

(i = 1, . . . , n) and to either (i) another external fermion or (ii) an internal propagator.

While diagrams of type (ii) produce only single logarithms of collinear origin, diagrams

of type (i) give rise to single and double logarithms. The latter originate from the region

where the gauge-boson momentum is soft and collinear to one of the external fermions. At

two loops, the following five types of diagrams give rise to NLL mass singularities

i

j

V1

V2

,

i

j

V1

V2

,

j

i

k

V2

V1

,

i

j

V1

V3
V2

,

i

j

V1

V2

.

(3.2)

Here the NLL mass singularities originate from the regions where the gauge boson V1 is

simultaneously soft and collinear, and the gauge bosons V2 and V3 in the first four types

of diagrams are soft and/or collinear.

3.1.2 Factorizable and non-factorizable contributions

The soft-collinear NLL contributions resulting from the diagrams (3.1) and (3.2) are split

into factorizable and non-factorizable ones. The one- and two-loop factorizable (F) parts

result from those diagrams where the virtual gauge bosons couple only to external lines.

Including sums over gauge bosons and external legs we have

MF
1 =

1

2

n∑

i=1

n∑

j=1

j 6=i

∑

V =A,Z,W±








i

j

VF








qµ→xpµ

, (3.3)

and

MF
2 =

n∑

i=1

n∑

j=1

j 6=i

∑

Vm=A,Z,W±







1

2








i

j

V1V2F +

i

j

V1

V2
F








+

i

j

V1

V3

V2F +

i

j

V1

V2

F +

i

j

V1

V2

F +
1

2

i

j

V1

V2

F
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+
n∑

k=1

k 6=i,j








j

i

k

V1

V2

F +
1

6

j

i

k

V2
V1

V3

F








+
1

8

n∑

k=1

k 6=i,j

n∑

l=1

l6=i,j,k

i

j
k

l

V1

V2

F







qµ→xpµ

.

(3.4)

The limit qµ → xpµ in (3.3) and (3.4) indicates that the above diagrams are evaluated

in the approximation where each of the four-momenta qµ of the various gauge bosons

is collinear to one of the momenta pµ of the external legs or soft. Where relevant, also

the contributions of hard regions are taken into account (see section 3.1.4). The label

F in the n-fermion tree subdiagrams in (3.3) and (3.4) indicates that, by definition, the

factorizable contributions include only those parts of the above diagrams that are obtained

by performing the loop integration with the momenta qm of the gauge bosons Vm set to

zero in the n-fermion tree subdiagrams.

These contributions are called factorizable since their logarithmic soft-collinear sin-

gularities factorize from the n-fermion tree amplitude (see below). The remaining con-

tributions are called non-factorizable (NF). They comprise those diagrams of type (3.1)

and (3.2) that involve gauge bosons Vi coupling to internal (hard) propagators, and the

non-factorizable parts of the diagrams in (3.3) and (3.4). In ref. [32], using collinear Ward

identities, it was explicitly shown that all non-factorizable one- and two-loop contributions

cancel at the amplitude level.

3.1.3 Soft-collinear approximation

The soft-collinear singularities are extracted from the above Feynman diagrams using the

following soft-collinear approximation for the interactions of virtual gauge bosons V1 . . . Vn

with an incoming (anti)fermion line i

lim
qµ
k
→xkpµ

i

V̄ µn
n . . . V̄

µ1

1

. . . i

V µn
n V

µ1
1

=

V̄ µn
n . . . V̄

µ1

1

i × −2eIVn

i (pi + q̃n)µn

(pi + q̃n)2
· · · −2eIV1

i (pi + q1)
µ1

(pi + q1)2
.

(3.5)

Here qk are the loop momenta of the gauge bosons Vk, and q̃k = q1+· · ·+qk. In practice, the

coupling of each soft/collinear gauge boson gives rise to a factor −2eIVk

i (pi + q̃k)
µ. When

applied to the factorizable diagrams in (3.3)–(3.4), this approximation removes all Dirac

matrices occuring along the fermionic lines and yields factorized expressions of the form

MF
1,2 = M0 K1,2, (3.6)

where the NLL corrections K1,2, involving coupling factors and logarithmically divergent

loop integrals, factorize from the n-fermion tree amplitude M0.

As discussed in ref. [32], the soft-collinear approximation (3.5) provides a correct de-

scription of the gauge-boson-fermion couplings in all soft/collinear regions that are relevant
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for an NLL analysis at one and two loops, with the following exception: The soft-collinear

approximation is not applicable to topologies of type

i

j

V

V ′

F ,

i

j

VF ,

i

j

VF , (3.7)

which contain UV singularities associated with a subdiagram with characteristic scale

µ2
loop ≪ Q2 (see next section) or give rise to power singularities of O(1/M2). For these

diagrams, the soft-collinear approximation (3.5) can be applied only to the vertices that

occur outside the one-loop subdiagrams that are depicted as grey blobs in (3.7), whereas

for the vertices and propagators inside the one-loop subdiagrams we have to apply the

usual Feynman rules.

To bring these diagrams in the factorized form (3.6), we have to simplify the Dirac

matrices along the fermionic lines where the soft-collinear approximation is not applicable.

To this end we utilize trace projectors that reduce these Dirac matrices to scalar quantities.

In practice, for the second and third diagram in (3.7), the Dirac matrices along the line i

are eliminated using [32]

Xu(pi, κi) =
∑

ρ

ωρΠij (ωρX) u(pi, κi) = Πij (ωκi
X) u(pi, κi), (3.8)

where X represents the diagram without F and external spinors, and the projector is

defined as

Πij (Γ) =
1

2pipj
Tr
[

Γ/pi/pj

]

(3.9)

if mi = mj = 0. For a detailed discussion we refer to section 3.2 of ref. [32].

3.1.4 Treatment of ultraviolet singularities

In addition to logarithmic soft-collinear singularities, also the logarithms originating from

UV singularities need to be taken into account. Moreover, the soft-collinear approxima-

tion (3.5) can give rise to fake UV logarithms that must carefully be avoided or subtracted.

Since UV singularities produce only a single logarithm per loop, in NLL approximation

we need to consider only UV-divergent diagrams of one-loop order and their insertion in

one-loop diagrams (3.3) involving leading soft-collinear singularities. The UV logarithms

originate from the UV cancellations between bare diagrams and counterterms as

(
µ2

D

Q2

)ǫ
[

1

ǫ

(

Q2

µ2
loop

)ǫ

︸ ︷︷ ︸

bare diagrams

− 1

ǫ

(
Q2

µ2
R

)ǫ

︸ ︷︷ ︸

counterterms

]

= ln

(

µ2
R

µ2
loop

)

+ O(ǫ), (3.10)

where µloop is the characteristic scale of the UV-singular loop diagram, µR is the renor-

malization scale, and the term
(
µ2

D/Q2
)ǫ

— that we always absorb in αǫ [see (2.9)] — is
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factorized. In our calculation, the UV poles of bare loop diagrams and counterterms are

removed by means of a minimal subtraction at the scale Q2. As a result, the UV divergent

terms take the form

(
µ2

D

Q2

)ǫ
{

1

ǫ

[(

Q2

µ2
loop

)ǫ

− 1

]

︸ ︷︷ ︸

bare diagrams

− 1

ǫ

[(
Q2

µ2
R

)ǫ

− 1

]

︸ ︷︷ ︸

counterterms

}

, (3.11)

which is obviously equivalent to (3.10). The advantage of this subtraction is that for

all bare (sub)diagrams with µ2
loop ∼ Q2 the UV singularities ǫ−1[(Q2/µ2

loop)
ǫ − 1] do not

produce large logarithms and are thus negligible. This holds also for fake UV singularities

resulting from the soft-collinear approximation. Thus, apart from the counterterms,

we must consider only those (subtracted) UV contributions that originate from bare

(sub)diagrams with µ2
loop ≪ Q2. At one loop this condition is never realized in the high-

energy limit (2.10), and in practice we need to consider only the two-loop UV contributions

which result from the diagrams in (3.3) through insertion of UV-divergent subdiagrams in

the lines that are not hard (µ2
loop ≪ Q2). These contributions correspond to the diagrams

depicted in (3.7), for which we use — instead of the soft-collinear approximation — the

projectors (3.8)–(3.9), thereby ensuring a correct description of the UV regions.

3.2 Massive fermions

The method outlined in section 3.1 is applicable also to processes involving external top

and/or bottom quarks. However, in the presence of massive fermions, two new aspects

must be taken into account: mass terms in the top-quark propagators and new diagrams

resulting from Yukawa interactions.

3.2.1 Top-mass terms

Let us recall that, in the high-energy limit (2.10), the top-quark mass is treated as a small

parameter and terms of O(NLL×mt/Q) are systematically neglected. In this approxima-

tion, only the following types of mt-terms must be considered:

(i) Yukawa couplings proportional to mt/MW;

(ii) mt-terms acting as collinear regulators in the denominator of propagators;

(iii) mt-terms in the numerator of loop integrals of O(NLL/mt) or O(NLL/MW,Z,H), i.e.

integrals that involve power singularities.

The majority of the mt-terms occuring in one- and two-loop diagrams does not belong to

these categories and can be set to zero. In particular, by explicit inspection of the relevant

one- and two-loop integrals, we find that mt-terms of type (iii) occur only inside the one-

loop insertions in the diagrams (3.7). Apart from these special cases all other mt-terms in

the numerators of loop integrals can be set to zero.
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3.2.2 NLL contributions from gauge interactions

As in the case of massless fermion scattering, the diagrams (3.1)–(3.2) with external-leg

interactions of soft/collinear gauge bosons produce logarithmic mass singularities. These

diagrams are split into factorizable and non-factorizable parts as discussed in section 3.1.2

and, in the presence of massive fermions, the Ward identities that are responsible for the

cancellation of the non-factorizable contributions [32] receive only negligible corrections

of O(mt/Q). Thus, as in the case of massless fermions, the non-factorizable parts

do not contribute and we can restrict ourselves to the calculation of the factorizable

parts (3.3) and (3.4).

The soft-collinear approximation (3.5) can easily be adapted to massive fermions by

including the mt-terms in the denominator of the top-quark propagators and leaving the

numerator as in the massless case. In principle mt-terms modify also the numerator of (3.5).

However, as observed above, such terms are relevant only in the one-loop insertion diagrams

in (3.7). Here, as discussed in section 3.1.3, we employ the usual Feynman rules — and

not the soft-collinear approximation — due to the presence of UV divergences or power

singularities of O(1/M2).

To bring the diagrams of type (3.7) in the factorized form (3.6), we utilize projections

analogous to (3.8). In the case of massive fermions, using the two projectors

Πij (Γ) =
2pipj

(2pipj)2 − 4m2
i m

2
j

Tr

[

Γ(/pi
+ mi)

(

/pj
−

mim
2
j

pipj

)]

(3.12)

and

Π̃ij (Γ) =
2pipj

(2pipj)2 − 4m2
i m

2
j

Tr

[

Γ(/pi
+ mi)

(

1 −
/pi/pj

pipj

)]

(3.13)

we obtain

Xu(pi, κi) =
∑

ρ

ωρ

[

Πij (ωρX) + Π̃ij (ωρX) /pj

]

u(pi, κi). (3.14)

Here, in contrast to the massless case, the Dirac matrices are not projected out completely

and a term proportional to Π̃ij(ωρX)/pj
remains, which cannot be cast in the factorized

form (3.6). However, after explicit evaluation of the loop integration, we find that these

Π̃ij-terms are suppressed in the high-energy limit and only the factorizable terms associated

with the projector Πij contribute.

The projectors (3.12)–(3.14) are applicable in the case where particle i is an incoming

fermion. For antifermions similar projectors can be constructed, which differ only in the

sign of the mi-terms. As discussed in section 2.2, this difference is irrelevant since only

squared mass terms produce NLL contributions. Thus, the results derived for fermions are

directly applicable to antifermions.

All logarithms of UV origin — also in the presence of Yukawa interactions — are

treated by means of a minimal subtraction at the scale Q2 as explained in section 3.1.4.
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3.2.3 NLL contributions from Yukawa interactions

The interaction of external bottom or top legs with scalar bosons is suppressed in all

soft/collinear regions. Thus, Yukawa interactions can produce NLL contributions only

through the counterterms (see section 4.1) and the topologies of type (3.7), which con-

tain UV singularities or power singularities of O(1/M2). In addition to the diagrams of

type (3.7) that are present in the massless case, the following new bare diagrams must be

taken into account:

MYuk
2 =

n∑

i=1

n∑

j=1

j 6=i

∑

Vm=A,Z,W±

∑

Φl=H,χ,φ±







i

j

V1

Φ2

F +

i

j

V1

Φ2

F

+

i

j

Φ1

V3

Φ2F +

i

j

V1

V3

Φ2F +

i

j

Φ1

V3

V2F







. (3.15)

By explicit inspection we find that the last two diagrams in (3.15) are suppressed in NLL

accuracy since the V V Φ couplings of O(MW,Z) are not compensated by 1/M terms from

the loop integrals. The NLL terms resulting from the first three diagrams in (3.15) are

worked out in section 5.1.

3.3 Form-factor checks

When evaluating the factorizable contributions of arbitrary n-fermion processes, we have to

eliminate the Dirac matrices along the fermionic lines in order to separate the loop integrals

from the tree amplitude M0. For this purpose we use the soft-collinear approximation for

gauge interactions presented in section 3.1.3 and the fact that the Yukawa interactions are

suppressed in all soft/collinear regions (see section 3.2.3).

We have checked the validity of this procedure for the case of the form factor which

couples a fermion-antifermion pair to an external Abelian field. In our approach, the radia-

tive corrections to this form factor are given by the factorizable contributions (3.3), (3.4),

and (3.15) with n = 2 external fermions (in this case the diagrams with three and four

legs in (3.4) do not contribute). Alternatively, we have calculated the one- and two-loop

corrections to the form factor in the high-energy limit including all Feynman diagrams,

without neglecting mt-terms in the numerator, and employing projection techniques (see

e.g. ref. [35]) instead of the soft-collinear approximation. After performing the minimal

subtraction of the UV divergences as explained in section 3.1.4, the results of the com-

plete form-factor calculation agree with the ones resulting from the factorizable contri-

butions (3.3), (3.4), and (3.15) in soft-collinear approximation. We have also verified by

explicit evaluation that, as expected from the discussion in section 3.2.3, the form-factor

diagrams with Yukawa interactions that are not included in (3.15) are either suppressed or
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vanish in NLL accuracy. Two of these additional Yukawa diagrams4 yield non-vanishing

NLL contributions which are, however, of pure UV origin and are completely removed by

the minimal UV subtraction.

4. One-loop results

The one-loop amplitude gets contributions from the factorizable one-loop diagrams (3.3)

and from counterterms,

M̃1 = M̃F
1 + M̃CT

1 . (4.1)

The results for the loop diagrams are summarized in appendix A.1. Here we discuss the

one-loop renormalization and list the final results for the renormalized one-loop amplitude.

As shown in ref. [16] the one-loop NLL corrections factorize, i.e. they can be expressed

through correction factors that multiply the Born amplitude. Moreover, they can be split

in a symmetric-electroweak part, an electromagnetic part, which in particular contains all

soft/collinear singularities associated with photons, and an MZ-dependent part that results

from the difference in the W- and Z-boson masses. This splitting permits to separate the

soft/collinear singularities resulting from photons in a gauge-invariant way and is very

important in view of the discussion of the two-loop contributions.

4.1 One-loop renormalization

As discussed in ref. [32], mass renormalization is not relevant in NLL approximation. Thus,

counterterm contributions result only from the renormalization of the electroweak gauge

couplings and the top-quark Yukawa coupling,

gk,0 = gk +
∞∑

l=1

(αǫ

4π

)l
δg

(l)
k , e0 = e +

∞∑

l=1

(αǫ

4π

)l
δe(l), λt,0 = λt +

∞∑

l=1

(αǫ

4π

)l
δλ

(l)
t , (4.2)

and from the renormalization constants associated with the wave functions of the external

fermions i = 1, . . . , n,

Zi = 1 +
∞∑

l=1

(αǫ

4π

)l
δZ

(l)
i . (4.3)

All couplings are renormalized in the MS scheme, but we moreover subtract the UV sin-

gularities both in the bare and the counterterm contributions as explained in section 3.1.4.

The counterterm for the Yukawa coupling can be determined from the divergent parts of

the counterterms to g2, MW and mt using tree-level relations. Assuming that the renor-

malization scale5 µR is of the order of or larger than MW, we find for the counterterms

δg
(1)
k

NLL
= −gk

2

1

ǫ
b
(1)
k

[(
Q2

µ2
R

)ǫ

− 1

]

, δe(1) NLL
= −e

2

1

ǫ
b(1)
e

[(
Q2

µ2
R

)ǫ

− 1

]

,

δλ
(1)
t

NLL
= −λt

2

1

ǫ
b
(1)
λt

[(
Q2

µ2
R

)ǫ

− 1

]

, (4.4)

4These are the one-loop diagram (A.2) with the gauge boson V1 replaced by a scalar boson and the

two-loop diagram (A.7) with the gauge boson V2 replaced by a scalar boson.
5We do not identify the renormalization scale µR and the scale of dimensional regularization µD.

– 16 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
2

where the dependence on the factor (Q2/µR)ǫ is due to the normalization of the expansion

parameter αǫ in (4.2), and the one-loop β-function coefficients in the electroweak Standard

Model (YΦ = 1) are given by

b
(1)
1 = − 41

6c2
W

, b
(1)
2 =

19

6s2
W

, b(1)
e = −11

3
, b

(1)
λt

=
9

4s2
W

+
17

12c2
W

− 9m2
t

4s2
W

M2
W

. (4.5)

For later convenience we also define the QED β-function coefficient, which is determined

by the light-fermion contributions only,

b
(1)
QED = −4

3

∑

f 6=t

Nf
c Q2

f = −80

9
, (4.6)

where Nf
c represents the colour factor, i.e. Nf

c = 1 for leptons and Nf
c = 3 for quarks. The

renormalization of the mixing parameters cW and sW can be determined via (2.19) from

the renormalization of the coupling constants.

The contribution of the counterterms (4.4) can easily be absorbed into the Born

amplitude

M0(Q
2) ≡ M0

∣
∣
∣
∣
gk=gk(Q2), e=e(Q2), λt=λt(Q2)

(4.7)

via the running couplings

g2
k(Q

2)
NLL
= g2

k(µ
2
R)

{

1− αǫ

4π
b
(1)
k

1

ǫ

[(
Q2

µ2
R

)ǫ

−1

]}

=g2
k(µ

2
R)

{

1− αǫ

4π
b
(1)
k ln

(
Q2

µ2
R

)

+O(ǫ)

}

,

e2(Q2)
NLL
= e2(µ2

R)

{

1− αǫ

4π
b(1)
e

1

ǫ

[(
Q2

µ2
R

)ǫ

−1

]}

=e2(µ2
R)

{

1− αǫ

4π
b(1)
e ln

(
Q2

µ2
R

)

+O(ǫ)

}

, (4.8)

λ2
t (Q

2)
NLL
= λ2

t (µ
2
R)

{

1− αǫ

4π
b
(1)
λt

1

ǫ

[(
Q2

µ2
R

)ǫ

−1

]}

=λ2
t (µ

2
R)

{

1− αǫ

4π
b
(1)
λt

ln

(
Q2

µ2
R

)

+O(ǫ)

}

.

For practical applications one can use MS input parameters at the scale µR = MZ, or

alternatively the on-shell input parameters α(MZ), MZ and MW, or the Gµ input scheme.

These different schemes are based on input parameters at the electroweak scale and are

thus equivalent in NLL approximation. In the following we express all one- and two-loop

results in terms of the Born amplitude at the scale Q2. The notation M0(Q
2) emphasizes

the fact that the Born amplitude implicitly depends on logarithms ln(Q2/µ2
R) via the

running of the couplings.

In this setup, the only one-loop NLL counterterm contribution arises from the on-

shell wave-function renormalization constants δZ
(1)
i for the fermionic external legs. All

legs receive contributions from massive weak bosons, whereas the photonic contribution to

the counterterm for massless external fermions vanishes owing to a cancellation between

UV and mass singularities within dimensional regularization. The legs with top or bottom
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quarks additionally get Yukawa contributions. After subtraction of the UV poles we find

δZ
(1)
i

NLL
= −1

ǫ







∑

V =Z,W±

I V̄
i IV

i

[(
Q2

M2
V

)ǫ

− 1

]

+ IA
i IA

i

[

3δi,t

(
Q2

m2
t

)ǫ

− 1

]

+ zY
i

λ2
t

2e2

[(
Q2

m2
t

)ǫ

− 1

]}

. (4.9)

The Kronecker symbol δi,t is defined in (2.15). Compared with the massless case two

extra terms appear, one related to the massive top quark in photonic diagrams and one

originating from the Yukawa couplings. The Yukawa factors zY
i are obtained from

∑

Φ=H,χ,φ±

ĜΦ+

i GΦ
i = zY

i λ2
t (4.10)

and read

zY
i =







1, for left-handed third-generation quarks ϕi = tL, t̄L, bL, b̄L,

2, for right-handed top quarks, ϕi = tR, t̄R,

0, otherwise.

(4.11)

Finally, the one-loop counterterm for a process with n external fermions in NLL approxi-

mation is obtained as

M̃CT
1 = M0(Q

2)

n∑

i=1

1

2
δZ

(1)
i . (4.12)

4.2 Renormalized one-loop amplitude

Inserting the results from (A.5), (A.6) and (4.9)–(4.12) into (4.1), we can write for the

renormalized one-loop matrix element for a process with n external fermions

M̃1
NLL
= M0(Q

2)
[
F sew

1 + ∆F em
1 + ∆FZ

1

]
. (4.13)

Here the corrections are split into a symmetric-electroweak (sew) part,

F sew
1

NLL
= −1

2

n∑

i=1

n∑

j=1

j 6=i

∑

V =A,Z,W±

I V̄
i IV

j I(ǫ,MW; pi, pj) −
λ2

t

4e2
C(mt)

n∑

i=1

zY
i , (4.14)

which is obtained by setting the masses of all gauge bosons, A,Z and W±, equal to MW

everywhere, an electromagnetic (em) part

∆F em
1 = −1

2

n∑

i=1

n∑

j=1

j 6=i

IA
i IA

j ∆I(ǫ, 0; pi, pj), (4.15)

resulting from the mass gap between the W boson and the massless photon, and an MZ-

dependent part

∆FZ
1 = −1

2

n∑

i=1

n∑

j=1

j 6=i

IZ
i IZ

j ∆I(ǫ,MZ; pi, pj), (4.16)
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describing the effect that results from the difference between MW and MZ. The functions

∆I(ǫ,m; pi, pj) = I(ǫ,m; pi, pj) − I(ǫ,MW; pi, pj), (4.17)

which are associated with the exchange of gauge bosons of mass m, describe the effect

resulting from the difference between m and MW.

We have expressed the large logarithms in the Yukawa contribution

C(mt)
NLL
= Lt +

1

2
L2

t ǫ +
1

6
L3

t ǫ
2 + O(ǫ3), (4.18)

which originates only from the counterterm (4.9), through their natural scale mt in

Lt = ln(Q2/m2
t ), while all the gauge-interaction contributions are written in terms of

L = ln(Q2/M2
W) as usual. In order to build squared one-loop expressions to order ǫ0,

which enter the two-loop amplitude, we need to expand all one-loop terms up to order ǫ2.

For the functions I and ∆I we obtain

I(ǫ,MW; pi, pj)
NLL
= −L2 − 2

3
L3ǫ − 1

4
L4ǫ2 + (3 − 2lij)

(

L +
1

2
L2ǫ +

1

6
L3ǫ2

)

+ O(ǫ3),

∆I(ǫ,MZ; pi, pj)
NLL
= lZ

(
2L + 2L2ǫ + L3ǫ2

)
+ O(ǫ3),

∆I(ǫ, 0; pi, pj)
NLL
= (δi,0 + δj,0)

(

−ǫ−2+
1

2
L2+

1

3
L3ǫ+

1

8
L4ǫ2

)

+(δi,t+δj,t)

(

Lǫ−1+L2

+
1

2
L3ǫ +

1

6
L4ǫ2

)

+

[

2lij −
3

2
(δi,0 + δj,0) − δi,t(1 + li)

− δj,t(1 + lj)

](

ǫ−1 + L +
1

2
L2ǫ +

1

6
L3ǫ2

)

+ O(ǫ3). (4.19)

Only the function ∆I(ǫ, 0; pi, pj), which incorporates the interactions with massless pho-

tons, depends on the fermion masses mi through the symbols δi,0 and δi,t defined in (2.15).

The functions I(ǫ,MW; pi, pj) and ∆I(ǫ,MZ; pi, pj), which correspond to the exchange of

massive gauge bosons, are independent of the fermion masses and agree with the results

for massless fermions in ref. [32].

The functions I and ∆I are symmetric with respect to an exchange of the external

legs i, j, and apart from the angular-dependent lij-terms, the dependence on pi and pj can

be separated:

I(ǫ,m; pi, pj)
∣
∣
∣
lij=0

=
1

2

[

I(ǫ,m; pi, pi) + I(ǫ,m; pj , pj)
]

, (4.20)

where lii = ljj = 0 is understood. Under the sums over i, j in (4.13)–(4.16) we can replace

I(ǫ,m; pj , pj) → I(ǫ,m; pi, pi), use the charge-conservation identity (2.33) and write

M0(Q
2)

n∑

i=1

n∑

j=1

j 6=i

I V̄
i IV

j I(ǫ,MV ; pi, pj)

∣
∣
∣
∣
lij=0

= −M0(Q
2)

n∑

i=1

IV
i I V̄

i I(ǫ,MV ; pi, pi),

(4.21)

and similarly for ∆I. This relation turns out to be useful later.
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5. Two-loop results

The renormalized two-loop matrix element gets contributions from the factorizable two-

loop diagrams (3.4) and (3.15), from wave-function renormalization, and from parameter

renormalization,

M̃2 = M̃F
2 + MYuk

2 + M̃WF
2 + M̃PR

2 . (5.1)

The results for the two-loop diagrams (3.4), which involve only gauge interactions, are

summarized in appendix A.2. Here we first show that the Yukawa contribution of the

factorizable two-loop diagrams in (3.15) vanishes in NLL accuracy. Then we list the two-

loop renormalization contributions and finally combine the factorizable contributions from

two-loop diagrams with gauge interactions and the renormalization contributions into the

complete renormalized two-loop amplitude.

As discussed in section 3, the NLL corrections factorize, i.e. they can be expressed

through correction factors that multiply the Born amplitude. Moreover, as we show, the

two-loop correction factors can be expressed entirely in terms of one-loop quantities.

5.1 Two-loop Yukawa contributions

As explained in section 3.2.3, the only non-suppressed NLL contributions involving Yukawa

interactions, apart from counterterms, arise from the first three diagrams in (3.15),

MYuk
2

NLL
=

n∑

i=1

n∑

j=1

j 6=i

∑

V1=A,Z,W±

∑

Φ2=H,χ,φ±







i

j

V1

Φ2

F +

i

j

V1

Φ2

F

+
∑

Φ3=H,χ,φ±

i

j

Φ3

V1

Φ2F







. (5.2)

The evaluation of these three diagrams is presented in section A.3. In NLL approximation

we find that, up to a minus sign, the integral functions associated with the three individual

diagrams equal each other, and combining all diagrams we get

MYuk
2

NLL
= − 1

e2
M0

n∑

i=1

n∑

j=1

j 6=i

∑

V1=A,Z,W±

∑

Φ2=H,χ,φ±

DY(MV1
; pi, pj) I V̄1

j Ĝ
Φ+

2

i

×






GΦ2

i IV1

i − ÎV1

i GΦ2

i +
∑

Φ3=H,χ,φ±

GΦ3

i IV1

Φ3Φ2






= 0, (5.3)

where the result for the function DY is given in (A.53). Owing to global gauge invariance

the combination of gauge and Yukawa couplings in the curly brackets of (5.3) vanishes [cf.

(2.32)], so the only two-loop NLL contributions from Yukawa interactions originate from
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the wave-function counterterms discussed in section 5.2. This observation confirms the

prediction of refs. [24, 25], where in soft-collinear effective theory at scales below Q scalar

particles contribute only via wave-function renormalization.

5.2 Two-loop renormalization

At two loops, the mass renormalization leads to non-suppressed logarithmic terms only

through the insertion of the one-loop mass counterterms in the one-loop logarithmic cor-

rections. However, these contributions are of NNLL order and can thus be neglected in

NLL approximation. In this approximation also the purely two-loop counterterms that

are associated with the renormalization of the external-fermion wave functions and the

couplings, i.e. δZ
(2)
i , δg

(2)
k , δe(2) and δλ

(2)
t , do not contribute.

The only NLL two-loop counterterm contributions are those that result from the com-

bination of the one-loop amplitude with the one-loop counterterms δZ
(1)
i , δg

(1)
k , δe(1) and

δλ
(1)
t . The wave-function counterterms yield

M̃WF
2 = M̃F

1

n∑

i=1

1

2
δZ

(1)
i . (5.4)

The unrenormalized one-loop amplitude M̃F
1 and the wave-function renormalization con-

stants δZ
(1)
i are given in (A.5) and (4.9), respectively. In NLL approximation only the LL

part of M̃F
1 contributes to (5.4). At this level of accuracy, the unrenormalized amplitude

M̃F
1 and the renormalized amplitude M̃1 (4.13) are equal, and we can use (4.21) in or-

der to write M̃F
1 and δZ

(1)
i such that all gauge-group generators IV

i appear only in terms

of the Casimir operators
∑

V =A,Z,W± I V̄
i IV

i and IA
j IA

j , which commute with each other.

This enables us to combine the counterterms M̃WF
2 (5.4) with the unrenormalized result

M̃F
2 (A.46) into the form presented in section 5.3.

The remaining NLL two-loop counterterms result from the insertion of the one-loop

coupling-constant counterterms (4.4) in the one-loop amplitude (4.13) and read

e2M̃PR
2

NLL
= − 1

2ǫ

[(
Q2

µ2
R

)ǫ

− 1

]

M0(Q
2)

n∑

i=1

{[

b
(1)
1 g2

1

(
Yi

2

)2

+ b
(1)
2 g2

2Ci

]

I(ǫ,MW; pi, pi)

+ b(1)
e e2Q2

i ∆I(ǫ, 0; pi, pi)

}

. (5.5)

Again only the LL parts of the one-loop amplitude contribute to M̃PR
2 , so (4.21) has been

used to arrive at the form (5.5), and the Yukawa terms in F sew
1 as well as the corresponding

counterterms δλ
(1)
t are irrelevant.

5.3 Renormalized two-loop amplitude

Using the results of appendices A and C, we find that the renormalized two-loop matrix
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element can be written as

M̃2
NLL
= M0(Q

2)

{

1

2
[F sew

1 ]2 + F sew
1 ∆F em

1 + F sew
1 ∆FZ

1 +
1

2
[∆F em

1 ]2 + ∆FZ
1 ∆F em

1

+ Gsew
2 + ∆Gem

2

}

, (5.6)

in terms of the one-loop correction factors defined in (4.14)–(4.16) and the additional two-

loop terms

e2Gsew
2 =

1

2

n∑

i=1

[

b
(1)
1 g2

1

(
Yi

2

)2

+ b
(1)
2 g2

2Ci

]

J(ǫ,MW, µ2
R; pi, pi),

∆Gem
2 =

1

2

n∑

i=1

Q2
i

{

b(1)
e

[
∆J(ǫ, 0, µ2

R; pi, pi) − ∆J(ǫ, 0,M2
W; pi, pi)

]

+ b
(1)
QED ∆J(ǫ, 0,M2

W; pi, pi)

}

. (5.7)

The two-loop functions J and ∆J are defined in (A.48) through the one-loop functions I

and ∆I, so the entire two-loop amplitude is expressed in terms of one-loop quantities. The

relevant J-functions read explicitly

J(ǫ,MW, µ2
R; pi, pi)

NLL
=

1

3
L3 − lµR

L2 + O(ǫ),

∆J(ǫ, 0,M2
W; pi, pi)

NLL
= δi,0

(
3

2
ǫ−3 + 2Lǫ−2 + L2ǫ−1

)

− δi,t

(
Lǫ−2 + 2L2ǫ−1 + 2L3

)
+ O(ǫ),

∆J(ǫ, 0, µ2
R; pi, pi) − ∆J(ǫ, 0,M2

W; pi, pi)
NLL
= lµR

{

δi,0

[

−2ǫ−2 + ǫ−1(lµR
− 2L)

+ lµR
L − 1

3
l2µR

]

+ δi,t

(
2Lǫ−1 + 4L2 − lµR

L
)

}

+ O(ǫ), (5.8)

where

lµR
= ln

(
µ2

R

M2
W

)

. (5.9)

Note that the terms Gsew
2 and ∆Gem

2 in (5.7) only involve NLLs.

In order to be able to express (5.6) in terms of the one-loop operators (4.14)–(4.16) it

is crucial that terms up to order ǫ2 are included in the latter.

The coefficients b
(1)
e and b

(1)
QED describe the running of the electromagnetic coupling

above and below the electroweak scale, respectively. The former receives contributions

from all charged fermions and bosons, whereas the latter receives contributions only from

light fermions, i.e. all charged leptons and quarks apart from the top quark.

– 22 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
2

The couplings that enter the one- and two-loop correction factors6 are renormalized at

the general scale µR & MW. The renormalization of the coupling constants g1, g2, e, and λt

in the lowest-order matrix element M0(Q
2) in (4.13) and (5.6) is discussed in section 4.1.

The µR-dependence of M0(Q
2) is implicitly defined by (4.8), and the dependence of the

one- and two-loop correction factors on µR is described by the terms (5.7). The contribu-

tions (5.7) originate from combinations of UV and mass singularities. We observe that the

term proportional to b
(1)
e vanishes for µR = MW. Instead, the terms proportional to b

(1)
1 ,

b
(1)
2 , and b

(1)
QED cannot be eliminated through an appropriate choice of the renormalization

scale. This reflects the fact that such two-loop terms do not originate exclusively from the

running of the couplings in the one-loop amplitude.

Combining the Born amplitude with the one- and two-loop NLL corrections

we can write

M NLL
= M0(Q

2)F sew FZ F em, (5.10)

where we observe a factorization of the symmetric-electroweak contributions,

F sew NLL
= 1 +

αǫ

4π
F sew

1 +
(αǫ

4π

)2
[
1

2
(F sew

1 )2 + Gsew
2

]

, (5.11)

the terms resulting from the difference between MW and MZ,

FZ NLL
= 1 +

αǫ

4π
∆FZ

1 , (5.12)

and the electromagnetic terms resulting from the mass gap between the photon and the

W boson,

F em NLL
= 1 +

αǫ

4π
∆F em

1 +
(αǫ

4π

)2
[
1

2
(∆F em

1 )2 + ∆Gem
2

]

. (5.13)

We also observe that the symmetric-electroweak and electromagnetic terms are consistent

with the exponentiated expressions

F sew NLL
= exp

[
αǫ

4π
F sew

1 +
(αǫ

4π

)2
Gsew

2

]

,

F em NLL
= exp

[
αǫ

4π
∆F em

1 +
(αǫ

4π

)2
∆Gem

2

]

. (5.14)

In particular, these two contributions exponentiate separately. This double-exponentiating

structure is indicated by the ordering of the non-commuting one-loop operators F sew
1 and

∆F em
1 in the interference term F sew

1 ∆F em
1 in our result (5.6). The commutator of these

two operators yields a non-vanishing NLL two-loop contribution.

Note that the O(α2) LL contributions in (5.14) are entirely given by the exponentiation

of the one-loop term. On the other hand, at the NLL level the presence of the O(α2) terms

6These are the coupling α in the perturbative expansion (2.9) and the couplings g1, g2, e and λt that

appear explicitly in (4.14), (5.7) and enter implicitly in (4.14)–(4.16) through the dependence of the gener-

ators (2.16) on the couplings and the mixing parameters cW and sW.
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Gsew
2 and ∆Gem

2 in our result (5.14) seems to spoil exponentiation. However, this is an

artifact of the fixed-order expansion of the argument of the exponential and must not be

interpreted as a breaking of exponentiation. This can easily be seen in the framework of

evolution equations, were the O(α2) terms in (5.14) naturally emerge from the running

of the coupling associated with the one-loop contribution. To illustrate this feature we

restrict ourselves to a gauge theory with a simple gauge group and consider a form factor.

In this case the structure of our result F sew in (5.14) is easily obtained from the manifestly

exponentiated expression (15) in ref. [30],

F = F0 exp

{
∫ Q2

M2
W

dx

x

[
∫ x

M2
W

dx′

x′
γ(α(x′)) + ζ(α(x)) + ξ(α(M2

W))

]}

. (5.15)

The NLL approximation requires the one-loop values of the various anomalous dimensions

as well as the one-loop running of α in γ(α),

γ(α(x′))
NLL
=

α(x′)

4π
γ(1) NLL

=
α(µ2

R)

4π

[

1 − α(µ2
R)

4π
b(1) ln

(
x′

µ2
R

)]

γ(1),

ζ(α(x))
NLL
=

α(µ2
R)

4π
ζ(1), ξ(α(M2

W))
NLL
=

α(µ2
R)

4π
ξ(1). (5.16)

Inserting these expressions in (5.15) one obtains

F NLL
= F0 exp

{

α(µ2
R)

4π

[

γ(1)

2
L2 +

(

ζ(1) + ξ(1)
)

L

]

−
(

α(µ2
R)

4π

)2
γ(1)

2
b(1)

(
1

3
L3 − lµR

L2

)}

, (5.17)

and one can easily verify that the two-loop term appearing in the argument of the expo-

nential, i.e. the term proportional to the β-function coefficient b(1), corresponds to the term

Gsew
2 in our result.

The one- and two-loop corrections (4.13)–(4.16) and (5.6)–(5.7) contain various combi-

nations of weak-isospin matrices IV
i , which are in general non-commuting and non-diagonal.

These matrices have to be applied to the Born amplitude M0(Q
2) according to the def-

inition (2.31). In order to express the results in a form which is more easily applicable

to a specific process, it is useful to split the integrals I(ǫ,MV ; pi, pj) and ∆I(ǫ,MV ; pi, pj)

in (4.14)–(4.16) into an angular-dependent part involving logarithms lij and an angular-

independent part. This permits to eliminate the sum over j for the angular-independent

parts of (4.14)–(4.16) using (4.21). One can easily see that the angular-independent part

of (4.14) gives rise to the Casimir operator (2.18). After these simplifications, all operators

that are associated with the angular-independent parts can be replaced by the correspond-

ing eigenvalues, and the one- and two-loop results can be written as

M NLL
= M0(Q

2) f sew fZ f em, (5.18)

where the electromagnetic terms read

f em NLL
= 1 +

αǫ

4π
∆f em

1 +
(αǫ

4π

)2
[
1

2
(∆f em

1 )2 + ∆gem
2

]

(5.19)
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with

∆f em
1

NLL
=

n∑

i=1

{

δi,0

(

−ǫ−2 +
1

2
L2 +

1

3
L3ǫ +

1

8
L4ǫ2

)

+ δi,t

(

Lǫ−1 + L2 +
1

2
L3ǫ +

1

6
L4ǫ2

)

−
[
3

2
δi,0 + δi,t(1 + li)

](

ǫ−1 + L +
1

2
L2ǫ +

1

6
L3ǫ2

)}

q2
i

−
(

ǫ−1 + L +
1

2
L2ǫ +

1

6
L3ǫ2

) n∑

i=1

n∑

j=1

j 6=i

lijqiqj + O(ǫ3),

∆gem
2

NLL
=

n∑

i=1

{

lµR

[

δi,0

(

−ǫ−2 −
(

L − 1

2
lµR

)

ǫ−1 +
1

2
lµR

L − 1

6
l2µR

)

+ δi,t

(

Lǫ−1 + 2L2 − 1

2
lµR

L

)]

b(1)
e +

[

δi,0

(
3

4
ǫ−3 + Lǫ−2 +

1

2
L2ǫ−1

)

− δi,t

(
1

2
Lǫ−2+L2ǫ−1+L3

)]

b
(1)
QED

}

q2
i +O(ǫ). (5.20)

For the term resulting from the difference between MW and MZ we get

fZ NLL
= 1 +

αǫ

4π
∆fZ

1 (5.21)

with

∆fZ
1

NLL
=

(

L + L2ǫ +
1

2
L3ǫ2

)

lZ

n∑

i=1

(g2

e
cWt3i −

g1

e
sW

yi

2

)2
+ O(ǫ3), (5.22)

and the symmetric-electroweak contributions yield

f sew NLL
= 1 +

αǫ

4π
f sew
1 +

(αǫ

4π

)2
[
1

2
(f sew

1 )2 + gsew
2

]

(5.23)

with

f sew
1

NLL
= −

(
1

2
L2 +

1

3
L3ǫ +

1

8
L4ǫ2 − 3

2
L − 3

4
L2ǫ − 1

4
L3ǫ2

) n∑

i=1

[
g2
1

e2

(yi

2

)2
+

g2
2

e2
ci

]

+

(

L +
1

2
L2ǫ +

1

6
L3ǫ2

)

Kad
1 − λ2

t

4e2

(

Lt +
1

2
L2

t ǫ +
1

6
L3

t ǫ
2

) n∑

i=1

zY
i + O(ǫ3),

gsew
2

NLL
=

(
1

6
L3 − 1

2
lµR

L2

) n∑

i=1

[

b
(1)
1

g2
1

e2

(yi

2

)2
+ b

(1)
2

g2
2

e2
ci

]

+ O(ǫ). (5.24)

In the above equations lµR
= ln (µ2

R/M2
W), and ci, t3i , yi, qi represent the eigenvalues of the

operators Ci, T 3
i , Yi, and Qi, respectively.

The only matrix-valued expression is the angular-dependent part of the symmetric-

electroweak contribution f sew
1 in (5.24),

Kad
1 =

n∑

i=1

n∑

j=1

j 6=i

lij
∑

V =A,Z,W±

I V̄
i IV

j . (5.25)
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The two-loop corrections involve terms proportional to Kad
1 and [Kad

1 ]2. However, the

latter are of NNLL order and thus negligible in NLL approximation. The combination of

the matrix (5.25) with the Born amplitude,

M0(Q
2)Kad

1 =
n∑

i=1

n∑

j=1

j 6=i

lij
∑

V =A,Z,W±

Mϕ1...ϕ′
i...ϕ

′
j ...ϕn

0 I V̄
ϕ′

iϕi
IV
ϕ′

jϕj

=
n∑

i=1

n∑

j=1

j 6=i

lij

{

Mϕ1...ϕi...ϕj ...ϕn

0

[
g2
1

e2

yiyj

4
+

g2
2

e2
t3i t

3
j

]

+
∑

V =W±

Mϕ1...ϕ′
i...ϕ

′
j ...ϕn

0 I V̄
ϕ′

iϕi
IV
ϕ′

jϕj

}

, (5.26)

requires the evaluation of matrix elements involving SU(2)-transformed external fermions

ϕ′
i, ϕ

′
j , i.e. isospin partners of the fermions ϕi, ϕj . Explicit results for four-particle processes

are presented in appendix D.

6. Discussion and conclusion

We have studied the asymptotic high-energy behaviour of virtual electroweak corrections

to arbitrary fermionic processes in the Standard Model. The present analysis extends

results previously obtained for massless fermion scattering [32] to processes that involve

also bottom and top quarks. By explicit evaluation of all relevant Feynman diagrams, we

have derived a general formula that describes one- and two-loop logarithmic contributions

of the form ln(Q2/M2
W). Such logarithmic terms — which dominate the electroweak

corrections at TeV colliders — originate from ultraviolet and mass (soft/collinear)

singularities in the asymptotic regime where all kinematical invariants are at an energy

scale Q2 ≫ M2
W. All masses of the heavy particles have been assumed to be of the same

order MW ∼ MZ ∼ MH ∼ mt but not equal, and all light fermions — including bottom

quarks — have been treated as massless particles. We have included all leading (LLs) and

next-to-leading (NLLs) logarithms.

The calculation has been performed in the complete spontaneously broken electroweak

Standard Model using the ’t Hooft-Feynman gauge. The fermionic wave functions are renor-

malized on shell, and coupling-constant renormalization is performed in the MS scheme,

but can be generalized easily. Employing the method developed in ref. [32], we have re-

duced all NLL contributions to factorizable diagrams. In this way the process-dependent

part of the calculation is isolated in a generic tree-level amplitude, which is multiplied by

process-independent factors consisting of loop integrals and gauge and Yukawa couplings.

Technically this is achieved by means of collinear Ward identities and a soft-collinear ap-

proximation. All relevant contributions originating from ultraviolet singularities are con-

sistently taken into account in every step of the calculation. In particular, as discussed

in section 3.1.4, the logarithms of ultraviolet origin are isolated in a few bare diagrams

[see (3.7) and (3.15)] and counterterms (see sections 4.1 and 5.2) by means of minimal

subtractions of the ultraviolet singularities and an appropriate choice of the subtraction
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scale. While the ultraviolet logarithms associated with the renormalization of the cou-

pling parameters in the factorized tree-level amplitude are easily absorbed into running

couplings, the process-independent correction factors receive additional contributions of

ultraviolet origin which result from the bare two-loop diagrams of type (3.7), the wave-

function renormalization [see (4.12) and (5.4)], and the renormalization of the couplings in

the soft-collinear corrections [see (5.5)].

Since the NLL electroweak corrections originate only from the electroweak interactions

of the external legs, our general results for n-fermion processes are also applicable to

processes involving external fermions and gluons and, more generally, to hard reactions

that involve n fermions plus an arbitrary number of SU(2) × U(1) singlets as external

particles. Additional legs associated with external electroweak singlets can only enter the

hard part (F) of the factorizable diagrams (3.3), (3.4) and (3.15). This modifies only the

process-dependent hard amplitude M0, which is always factorized in our derivations, while

the NLL correction factors receive contributions only from fermionic external legs and do

not depend on additional external singlets.

All two-loop integrals have been solved by two independent methods in NLL approx-

imation. One makes use of sector decomposition, the other uses the strategy of regions.

Explicit results have been given for all contributing factorizable Feynman diagrams.

The presence of soft/collinear singularities originating from virtual photons and their

interplay, at two loops, with logarithmic corrections resulting from massive particles is one

of the most delicate aspects of the problem. In order to isolate the finite ln(Q2/M2
W) terms

in a meaningful way, one has to separate the photonic divergences in a gauge-invariant

contribution that can be cancelled against real-photon corrections. To this end, we have

split the corrections into a finite symmetric-electroweak part, which is constructed by set-

ting the masses of all gauge bosons equal to MW, and remaining subtracted parts, which

describe the effects resulting from the γ-W and Z-W mass differences. By combining all

one- and two-loop diagrams we found that these three contributions factorize as described

in (5.10)–(5.13): the term associated with the γ-W mass splitting (F em) depends only on

the masses and charges of the external fermions and behaves as a pure QED correction

subtracted at photon mass MA = MW. The term resulting from the Z-W splitting (FZ)

is proportional to ln(M2
Z/M2

W) and depends only on the external-leg Z-boson couplings.

Finally, the contribution constructed by setting MA = MZ = MW in all loop diagrams

(F sew) turns out to be independent of symmetry-breaking effects such as mixing or cou-

plings proportional to the vacuum expectation value. This contribution, which contains

only finite ln(Q2/M2
W) terms, behaves as in a symmetric SU(2) × U(1) theory where mass

singularities are regularized by a common mass parameter. Moreover we find that the

electromagnetic and the symmetric-electroweak parts exponentiate as described in (5.14):

the corresponding two-loop contributions can be written as the second-order terms of ex-

ponentials of the one-loop contributions plus additional terms that are proportional to the

one-loop β-function coefficients.

These results agree with the resummations that have been proposed in the literature

and confirm — for fermion scattering processes — the assumption that the asymptotic

high-energy behaviour of electroweak interactions at two loops can be described by a sym-
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metric and unmixed SU(2) × U(1) theory matched with QED at the electroweak scale.

Indeed, apart from the terms involving ln(M2
Z/M2

W), in the final result we observe a can-

cellation of all effects associated with symmetry breaking. We have explicitly checked that,

upon separation of the QED singularities, our results are consistent with the predictions

of ref. [19] and refs. [24, 25].

As an application of our results for general n-fermion processes, we present

in appendix D explicit expressions for the case of four-particle processes involving four

fermions or two fermions and two gluons. In general, our process-independent results can

be applied to any reaction with external fermions and gluons as long as all kinematical

invariants are large. We plan to extend these results to processes involving external gauge

bosons and Higgs bosons.
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A. Loop integrals of factorizable contributions

In this appendix, we present explicit results for the loop integrals of the one- and two-

loop factorizable contributions defined in section 3.1.2 and the Yukawa contributions

in section 3.2.3. These are evaluated within the ’t Hooft-Feynman gauge, where the

masses of the Faddeev-Popov ghosts uA, uZ , uW±
and would-be Goldstone bosons χ, φ±

read MuA = MA = 0, Mχ = MuZ = MZ, and Mφ± = MuW = MW. Using the soft-collinear

approximation and the projectors introduced in sections 3.1.3 and 3.2.2, we express the

factorizable contributions resulting from individual diagrams as products of the n-fermion

Born amplitude with matrix-valued coupling factors and loop integrals.

The loop integrals associated with the various diagrams are denoted with symbols of the

type Dh(m1, . . . ,mn; pi, pj , . . .). The definition of these integrals is provided in appendix B.

They depend on various internal masses m1,m2, . . . and, through the external momenta

pi, pj , . . ., on the kinematical invariants rij and the masses m2
i = p2

i . The symbols mk

are always used to denote generic mass parameters, which can assume the values mk =

MW,MZ,mt,MH or mk = 0. Instead we use the symbols Mk to denote non-zero masses,

i.e. Mk = MW,MZ,mt,MH. The integrals are often singular when certain mass parameters

tend to zero, and the cases where such parameters are zero or non-zero need to be treated

separately. We also define subtracted functions

∆Dh(m1, . . . ,mn; pi, . . .) = Dh(m1, . . . ,mn; pi, . . .) − Dh(MW, . . . ,MW; pi, . . .), (A.1)

where the integral with all internal mass parameters equal to MW is subtracted.
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The integrals have been computed in NLL accuracy, and the result is expanded in ǫ up

to O(ǫ2) at one loop and O(ǫ0) at two loops. The UV poles have been eliminated by means

of a minimal subtraction as explained in section 3.1.4 such that the presented results are

UV finite. The integrals have been evaluated separately for all physical combinations of

gauge-boson and fermion masses on internal and external lines. All loop integrals have

been solved and cross-checked using two independent methods: an automatized algorithm

based on the sector-decomposition technique [33] and the method of expansion by regions

combined with Mellin-Barnes representations (see ref. [31] and references therein).

The one-loop diagrams are treated in section A.1, the two-loop diagrams involv-

ing gauge interactions in section A.2, and the diagrams involving Yukawa interactions

in section A.3.

A.1 One-loop diagrams

The one-loop factorizable contributions (3.3) originate only from one type of diagram,7

M̃ij
1 =

i

j

V1F
NLL
= −M0

∑

V1=A,Z,W±

I V̄1

i IV1

j D0(MV1
; pi, pj). (A.2)

In NLL accuracy, the representations of the generators I V̄1

i and IV1

j correspond to the

chiralities given by the spinors of the external particles i and j, respectively. The loop

integral D0 is defined in (B.6) and to NLL accuracy yields

D0(M1; pi, pj)
NLL
= −L2 − 2

3
L3ǫ − 1

4
L4ǫ2 + (4 − 2lij)

(

L +
1

2
L2ǫ +

1

6
L3ǫ2

)

+ l1
(
2L + 2L2ǫ + L3ǫ2

)
,

D0(0; pi, pj)
NLL
= 2lijǫ

−1 − (δi,0 + δj,0)
(
ǫ−2 + 2ǫ−1

)
+

{

δi,t

[

Lǫ−1 +
1

2
L2 +

1

6
L3ǫ

+
1

24
L4ǫ2−liǫ

−1+(2 − li)

(

L+
1

2
L2ǫ+

1

6
L3ǫ2

)]

+(i↔j)

}

,

(A.3)

where the UV singularities

DUV
0 (m1; pi, pj)

NLL
= 4ǫ−1 (A.4)

have been subtracted. The shorthands L, li, lij , δi,t, δi,0 are defined in section 2.1.

Summing over all external legs, we find for the factorizable one-loop contributions (3.3)

M̃F
1

NLL
= M0

[

FF,sew
1 + ∆FF,em

1 + ∆FF,Z
1

]

(A.5)

7The l-loop diagrams depicted in this appendix are understood without factors (αǫ/4π)l.
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with

FF,sew
1 = −1

2

n∑

i=1

n∑

j=1

j 6=i

∑

V =A,Z,W±

I V̄
i IV

j D0(MW; pi, pj),

∆FF,em
1 = −1

2

n∑

i=1

n∑

j=1

j 6=i

IA
i IA

j ∆D0(0; pi, pj),

∆FF,Z
1 = −1

2

n∑

i=1

n∑

j=1

j 6=i

IZ
i IZ

j ∆D0(MZ; pi, pj), (A.6)

and ∆D0(m; pi, pj) defined in (A.1).

A.2 Two-loop diagrams involving gauge interactions

The two-loop NLL factorizable terms (3.4) involve fourteen different types of diagrams.

The diagrams 1–3, 12 and 14 in this section give rise to LLs and NLLs, whereas all other

diagrams yield only NLLs.

Diagram 1.

M̃1,ij
2 =

i

j

V1V2F
NLL
= M0

∑

V1,V2=A,Z,W±

I V̄2

i I V̄1

i IV2

j IV1

j D1(MV1
,MV2

; pi, pj), (A.7)

where the loop integral D1 is defined in (B.6) and yields

D1(M1,m2; pi, pj)
NLL
=

1

6
L4 − 2

3
(2 − lij + l1)L3,

D1(0,M2; pi, pj)
NLL
= (δi,0 + δj,0)

[

L2ǫ−2 +
4

3
L3ǫ−1 + L4 − l2

(
2Lǫ−2 + 4L2ǫ−1 + 4L3

)

− (4 − 2lij)

(

Lǫ−2 + L2ǫ−1 +
2

3
L3

)]

+

{

δi,t

[

−L3ǫ−1 − 23

12
L4 + (4 − 3lij + 2l2 + li) L2ǫ−1

+

(
20

3
− 17

3
lij +

16

3
l2 +

7

3
li

)

L3

]

+ (i ↔ j)

}

,

D1(0, 0; pi, pj)
NLL
= δi,0δj,0

[
ǫ−4 + (4 − 2lij) ǫ−3

]
+

{

δi,tδj,0

[

1

3
ǫ−4 − 2

3
Lǫ−3 − 1

3
L2ǫ−2

− 1

9
L3ǫ−1 − 1

36
L4 +

(
4

3
− 4

3
lij +

2

3
li

)

ǫ−3

− (4 − lij − li)

(
2

3
Lǫ−2 +

1

3
L2ǫ−1 +

1

9
L3

)]

+ (i ↔ j)

}
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+ δi,tδj,t

[

2L2ǫ−2 +
10

3
L3ǫ−1 +

7

2
L4 + 4lijLǫ−2 + (8 + 6lij) L2ǫ−1

+

(
40

3
+

22

3
lij

)

L3−(li+lj)
(
2Lǫ−2+5L2ǫ−1+7L3

)

]

. (A.8)

Here the UV singularities

DUV
1 (M1,m2; pi, pj)

NLL
= −4L2ǫ−1 − 8

3
L3,

DUV
1 (0,m2; pi, pj)

NLL
= −4 (δi,0 + δj,0) ǫ−3 + (δi,t + δj,t)

(

4Lǫ−2 + 2L2ǫ−1 +
2

3
L3

)

(A.9)

have been subtracted.

Diagram 2.

M̃2,ij
2 =

i

j

V1

V2
F

NLL
= M0

∑

V1,V2=A,Z,W±

I V̄2

i I V̄1

i IV1

j IV2

j D2(MV1
,MV2

; pi, pj),(A.10)

where the loop integral D2 is defined in (B.6). This integral is free of UV singularities and

yields

D2(M1,M2; pi, pj)
NLL
=

1

3
L4 − 2

3
(4 − 2lij + l1 + l2) L3,

D2(0,M2; pi, pj)
NLL
= δi,0

[

−2

3
L3ǫ−1 − 5

6
L4 + (4 − 2lij)

(
L2ǫ−1 + L3

)

+ l2

(

2L2ǫ−1+
10

3
L3

)]

+δi,t

[

2

3
L4−

(

4− 8

3
lij +2l2+

2

3
li

)

L3

]

,

D2(M1, 0; pi, pj) = D2(0,M1; pj , pi),

D2(0, 0; pi, pj)
NLL
= δi,0δj,0

[
ǫ−4 + (4 − 2lij) ǫ−3

]
+

{

δi,tδj,0

[

1

6
ǫ−4 − 1

3
Lǫ−3 +

1

3
L2ǫ−2

+
4

9
L3ǫ−1 +

5

18
L4 + (2 − 2lij + li)

(
1

3
ǫ−3 − 2

3
Lǫ−2

)

+

(
4

3
+

2

3
lij −

4

3
li

)

L2ǫ−1 +

(
16

9
+

2

9
lij −

10

9
li

)

L3

]

+ (i ↔ j)

}

+ δi,tδj,t

[

−4

3
L3ǫ−1 − 7

3
L4 − 4lijL

2ǫ−1 −
(

16

3
+

20

3
lij

)

L3

+ (li + lj)

(

2L2ǫ−1 +
14

3
L3

)]

. (A.11)
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Diagram 3.

M̃3,ij
2 =

i

j

V1

V3

V2F

NLL
= −i

g2

e
M0

∑

V1,V2,V3=A,Z,W±

εV1V2V3I V̄2

i I V̄1

i I V̄3

j D3(MV1
,MV2

,MV3
; pi, pj), (A.12)

where the ε-tensor is defined in ref. [32] [see also (2.17)]. The loop integral D3 is defined

in (B.6) and yields

D3(M1,m2,M3; pi, pj)
NLL
=

1

6
L4 −

(

3 − 2

3
lij +

1

3
l1 +

1

3
l3

)

L3,

D3(0,M2,M3; pi, pj)
NLL
= δi,0

[

−1

3
L3ǫ−1 − 5

12
L4 + (2 − lij + l3)L2ǫ−1 +

(
1

3
− lij

+
5

3
l3

)

L3

]

+ δi,t

[

1

3
L4 −

(
11

3
− 4

3
lij + l3 +

1

3
li

)

L3

]

,

D3(M1,M2, 0; pi, pj)
NLL
= −3δi,0Lǫ−2 + δi,t

(
9

2
L2ǫ−1 +

7

2
L3

)

+ δj,0

[

−1

3
L3ǫ−1 − 5

12
L4

− 3Lǫ−2 − (2 + lij − l1)L2ǫ−1 +

(
2

3
− lij +

5

3
l1

)

L3

]

+ δj,t

[

1

3
L4 +

3

2
L2ǫ−1 +

(
5

2
+

4

3
lij − l1 −

1

3
lj

)

L3

]

, (A.13)

where the UV singularities

DUV
3 (m1,m2,M3; pi, pj)

NLL
= −3L2ǫ−1 − 2L3,

DUV
3 (m1,m2, 0; pi, pj)

NLL
= −3 (δi,0 + δj,0) ǫ−3 + (δi,t + δj,t)

(

3Lǫ−2 +
3

2
L2ǫ−1 +

1

2
L3

)

(A.14)

have been subtracted.

Diagram 4.

M̃4,ij
2 =

i

j

V1

V2

F
NLL
= −M0

∑

V1,V2=A,Z,W±

IV2

i I V̄2

i IV1

i I V̄1

j D4(MV1
,MV2

; pi, pj),

(A.15)

where the loop integral D4 is defined in (B.6) and yields

D4(M1,m2; pi, pj)
NLL
=

1

3
L3,
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D4(0,M2; pi, pj)
NLL
= (δi,0 + δj,0)

(

Lǫ−2 + L2ǫ−1 +
2

3
L3

)

− 1

2
δi,t

(
L2ǫ−1 + L3

)

− δj,t

(
3

2
L2ǫ−1 +

17

6
L3

)

,

D4(0, 0; pi, pj)
NLL
= −δi,0δj,0 ǫ−3 + δi,tδj,0

(

ǫ−3 + 3Lǫ−2 +
5

2
L2ǫ−1 +

3

2
L2

)

+ δi,0δj,t

(

−2

3
ǫ−3 +

1

3
Lǫ−2 +

1

6
L2ǫ−1 +

1

18
L3

)

− δi,tδj,t

(

2Lǫ−2 + 8L2ǫ−1 +
38

3
L3

)

. (A.16)

Here the UV singularities

DUV
4 (M1,m2; pi, pj)

NLL
= L2ǫ−1 +

2

3
L3,

DUV
4 (0,m2; pi, pj)

NLL
= (δi,0 + δj,0) ǫ−3 − (δi,t + δj,t)

(

Lǫ−2 +
1

2
L2ǫ−1 +

1

6
L3

)

(A.17)

have been subtracted.

Diagram 4 and the following diagram 5 are the only cases where fermion masses in the

numerator of the fermion line i contribute to the result in NLL accuracy. In principle, these

fermion-mass terms contribute with generators IV
i and ÎV

i , belonging to representations

with different chiralities [see (2.29)]. But we found that this happens only in the case when

both gauge bosons V1 and V2 are photons, such that ÎA
i = IA

i . Thus all contributions

to (A.15) and (A.18) can be expressed in terms of the operators IV
i , IV

j , which belong to

the representations associated with the chiralities κi, κj of the external fermions.

Diagram 5.

M̃5,ij
2 =

i

j

V1

V2

F
NLL
= −M0

∑

V1,V2=A,Z,W±

IV2

i IV1

i I V̄2

i I V̄1

j D5(MV1
,MV2

; pi, pj),

(A.18)

where the loop integral D5 is defined in (B.6) and to NLL accuracy is given by D4, up to

a minus sign:

D5(m1,m2; pi, pj)
NLL
= −D4(m1,m2; pi, pj). (A.19)

Note that this relation only holds if the fermion-mass terms in the numerator along the

line i are correctly taken into account.
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Diagrams 6.

M̃6,ij
2 =

i

j

V1

V2V3

V4

F +

i

j

V1

uV2uV̄3

V4

F

NLL
=

1

2

g2
2

e2
M0

∑

V1,V2,V3,V4=A,Z,W±

I V̄1

i I V̄4

j εV1V̄2V̄3εV4V2V3 D6(MV1
,MV2

,MV3
,MV4

; pi, pj),

(A.20)

where the loop integral D6 is defined in (B.6) and yields

D6(M1,m2,m3,M4; pi, pj)
NLL
=

20

9
L3,

D6(0,M2,M3,M4; pi, pj)
NLL
=

20

9
L3 +

M2
2 + M2

3

2M2
4

[

(δi,0+δj,0)

(

−8Lǫ−2−4L2ǫ−1+
8

3
L3

)

+ (δi,t + δj,t)
(
8L2ǫ−1 + 12L3

)

]

,

D6(M1,M2,M3, 0; pi, pj) = D6(0,M2,M3,M1; pi, pj),

D6(0,M2,M3, 0; pi, pj)
NLL
= (δi,0 + δj,0)

(
10

3
Lǫ−2 +

5

3
L2ǫ−1

)

− (δi,t + δj,t)

(
10

3
L2ǫ−1 +

35

9
L3

)

. (A.21)

Here the UV singularities

DUV
6 (M1,m2,m3,M4; pi, pj)

NLL
=

10

3
L2ǫ−1 +

20

9
L3,

DUV
6 (0,m2,m3,M4; pi, pj)

NLL
=

10

3
L2ǫ−1 +

20

9
L3 +

m2
2 + m2

3

2M2
4

[

(δi,0 + δj,0)

(

−8ǫ−3

+ 4L2ǫ−1 +
8

3
L3

)

+ (δi,t + δj,t)
(
8Lǫ−2 + 8L2ǫ−1 + 4L3

)

]

,

DUV
6 (M1,m2,m3, 0; pi, pj) = DUV

6 (0,m2,m3,M1; pi, pj),

DUV
6 (0,m2,m3, 0; pi, pj)

NLL
=

10

3
(δi,0 + δj,0) ǫ−3

− (δi,t + δj,t)

(
10

3
Lǫ−2 +

5

3
L2ǫ−1 +

5

9
L3

)

(A.22)

have been subtracted. We observe that the loop integrals associated with A–Z mixing-

energy subdiagrams give rise to the contributions

∆D6(0,MW,MW,MZ; pi, pj)
NLL
=

M2
W

M2
Z

[

(δi,0 + δj,0)

(

−8Lǫ−2 − 4L2ǫ−1 +
8

3
L3

)

+ (δi,t + δj,t)
(
8L2ǫ−1 + 12L3

)

]

, (A.23)
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which depend linearly on the ratio M2
W/M2

Z. Similar terms appear also in diagrams 7, 8, 9,

and 10. These terms cancel when adding all contributions owing to relations between these

integrals (see appendix C), which hold also in the presence of massive external fermions.

Diagram 7.

M̃7,ij
2 =

i

j

V1

V2

V3

F
NLL
= −g2

2

e2
M0

∑

V1,V2,V3=A,Z,W±

I V̄1

i I V̄3

j

∑

V =A,Z,W±

εV1V̄2V̄ εV3V2V

× (D − 1)D7(MV1
,MV2

,MV3
; pi, pj), (A.24)

where D = 4 − 2ǫ. The loop integral D7 is defined in (B.6) and yields

D7(M1,m2,M3; pi, pj)
NLL
= 0,

D7(0,M2,M3; pi, pj)
NLL
=

M2
2

M2
3

[

(δi,0 + δj,0)

(

−Lǫ−2 − 1

2
L2ǫ−1 +

1

3
L3

)

+ (δi,t + δj,t)

(

L2ǫ−1 +
3

2
L3

)]

,

D7(M1,M2, 0; pi, pj) = D7(0,M2,M1; pi, pj),

D7(0,M2, 0; pi, pj)
NLL
= 0, (A.25)

where the UV singularities

DUV
7 (0,M2,M3; pi, pj)

NLL
=

M2
2

M2
3

[

(δi,0 + δj,0)

(

−ǫ−3 +
1

2
L2ǫ−1 +

1

3
L3

)

+ (δi,t + δj,t)

(

Lǫ−2 + L2ǫ−1 +
1

2
L3

)]

,

DUV
7 (M1,M2, 0; pi, pj) = DUV

7 (0,M2,M1; pi, pj) (A.26)

have been subtracted.

Diagram 8.

M̃8,ij
2 =

i

j

V1

Φ2V3

V4

F
NLL
= −e2v2M0

∑

V1,V3,V4=A,Z,W±

I V̄1

i I V̄4

j

∑

Φ2=H,χ,φ±

{

IV1 , I V̄3

}

HΦ2

×
{
IV3 , IV4

}

Φ2H
D8(MV1

,MΦ2
,MV3

,MV4
; pi, pj), (A.27)

where the curly brackets denote anticommutators and v is the vacuum expectation value.

The loop integral D8 is defined in (B.6) and yields

M2
WD8(M1,M2,m3,M4; pi, pj)

NLL
= 0,
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D8(0,M2,M3,M4; pi, pj)
NLL
=

1

M2
4

[

(δi,0 + δj,0)

(

−Lǫ−2 − 1

2
L2ǫ−1 +

1

3
L3

)

+ (δi,t + δj,t)

(

L2ǫ−1 +
3

2
L3

)]

,

D8(M1,M2,M3, 0; pi, pj) = D8(0,M2,M3,M1; pi, pj),

M2
WD8(0,M2,M3, 0; pi, pj)

NLL
= 0. (A.28)

Here the UV singularities

DUV
8 (0,M2,M3,M4; pi, pj)

NLL
=

1

M2
4

[

(δi,0 + δj,0)

(

−ǫ−3 +
1

2
L2ǫ−1 +

1

3
L3

)

+ (δi,t + δj,t)

(

Lǫ−2 + L2ǫ−1 +
1

2
L3

)]

,

DUV
8 (M1,M2,M3, 0; pi, pj) = DUV

8 (0,M2,M3,M1; pi, pj) (A.29)

have been subtracted.

Diagram 9.

M̃9,ij
2 =

i

j

V1

Φ2Φ3

V4

F
NLL
= −1

2
M0

∑

V1,V4=A,Z,W±

I V̄1

i I V̄4

j

∑

Φ2,Φ3=H,χ,φ±

IV1

Φ3Φ2
IV4

Φ2Φ3

× D9(MV1
,MΦ2

,MΦ3
,MV4

; pi, pj), (A.30)

where the loop integral D9 is defined in (B.6) and yields

D9(M1,M2,M3,M4; pi, pj)
NLL
=

2

9
L3,

D9(0,M2,M3,M4; pi, pj)
NLL
=

2

9
L3 +

M2
2 + M2

3

2M2
4

[

(δi,0 + δj,0)

(

2Lǫ−2 + L2ǫ−1 − 2

3
L3

)

− (δi,t + δj,t)
(
2L2ǫ−1 + 3L3

)

]

,

D9(M1,M2,M3, 0; pi, pj) = D9(0,M2,M3,M1; pi, pj),

D9(0,M2,M3, 0; pi, pj)
NLL
= (δi,0 + δj,0)

(
1

3
Lǫ−2 +

1

6
L2ǫ−1

)

− (δi,t + δj,t)

(
1

3
L2ǫ−1 +

7

18
L3

)

. (A.31)

Here the UV singularities

DUV
9 (M1,M2,M3,M4; pi, pj)

NLL
=

1

3
L2ǫ−1 +

2

9
L3,
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DUV
9 (0,M2,M3,M4; pi, pj)

NLL
=

1

3
L2ǫ−1 +

2

9
L3 +

M2
2 + M2

3

2M2
4

[

(δi,0 + δj,0)

(

2ǫ−3 − L2ǫ−1

− 2

3
L3

)

−(δi,t+δj,t)
(
2Lǫ−2+2L2ǫ−1+L3

)

]

,

DUV
9 (M1,M2,M3, 0; pi, pj) = DUV

9 (0,M2,M3,M1; pi, pj),

DUV
9 (0,M2,M3, 0; pi, pj)

NLL
=

1

3
(δi,0 + δj,0) ǫ−3

− (δi,t + δj,t)

(
1

3
Lǫ−2 +

1

6
L2ǫ−1 +

1

18
L3

)

(A.32)

have been subtracted.

Diagram 10.

M̃10,ij
2 =

i

j

V1

Φ2

V3

F
NLL
= −1

2
M0

∑

V1,V3=A,Z,W±

I V̄1

i I V̄3

j

∑

Φ2=H,χ,φ±

{
IV1 , IV3

}

Φ2Φ2

× D10(MV1
,MΦ2

,MV3
; pi, pj), (A.33)

where

D10 ≡ D7. (A.34)

Diagram 11. For the diagrams involving fermionic self-energy subdiagrams we consider

the contributions of a generic fermionic doublet Ψ with components Ψi = u, d. The sum

over the three generations of leptons and quarks is denoted by
∑

Ψ, and colour factors are

implicitly understood. Assuming that all down-type fermions are massless, md = 0, and

that the masses of up-type fermions are mu = 0 or mt, we have

M̃11,ij
2 =

i

j

V1

V4

Ψi2
Ψi3F

NLL
= −1

2
M0

∑

V1,V4=A,Z,W±

I V̄1

i I V̄4

j

×
∑

Ψ

{
∑

Ψi2
,Ψi3

=u,d

∑

κ=R,L

IV1

Ψκ
i3

Ψκ
i2

IV4

Ψκ
i2

Ψκ
i3

D11,0(MV1
,mi2 ,mi3 ,MV4

; pi, pj)

−
(

IV1

uRuRIV4

uLuL +IV1

uLuLIV4

uRuR

)

m2
uD11,m(MV1

,mu,mu,MV4
; pi, pj)

}

, (A.35)

where D11,m ≡ −4D8 represents the contribution associated with the mu-terms in the

numerator of the up-type fermion propagators of the loop insertion, whereas the integral

D11,0, which is defined in (B.6), accounts for the remaining contributions. This latter

integral yields

D11,0(M1,m2,m3,M4; pi, pj)
NLL
=

8

9
L3,
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D11,0(0,m2,m3,M4; pi, pj)
NLL
=

8

9
L3 +

m2
2 + m2

3

2M2
4

[

(δi,0 + δj,0)

(

4Lǫ−2 + 2L2ǫ−1 − 4

3
L3

)

− (δi,t + δj,t)
(
4L2ǫ−1 + 6L3

)

]

,

D11,0(M1,m2,m3, 0; pi, pj) = D11,0(0,m2,m3,M1; pi, pj),

D11,0(0,M2,M3, 0; pi, pj)
NLL
= (δi,0 + δj,0)

(
4

3
Lǫ−2 +

2

3
L2ǫ−1

)

− (δi,t + δj,t)

(
4

3
L2ǫ−1 +

14

9
L3

)

,

D11,0(0, 0, 0, 0; pi , pj)
NLL
= − (δi,0 + δj,0) ǫ−3 + (δi,t + δj,t)

(
2

3
Lǫ−2 − 2

9
L3

)

, (A.36)

where the UV singularities

DUV
11,0(M1,m2,m3,M4; pi, pj)

NLL
=

4

3
L2ǫ−1 +

8

9
L3,

DUV
11,0(0,m2,m3,M4; pi, pj)

NLL
=

4

3
L2ǫ−1 +

8

9
L3 +

m2
2 + m2

3

2M2
4

[

(δi,0 + δj,0)

(

4ǫ−3 − 2L2ǫ−1

− 4

3
L3

)

−(δi,t+δj,t)
(
4Lǫ−2+4L2ǫ−1+2L3

)

]

,

DUV
11,0(M1,m2,m3, 0; pi, pj) = DUV

11,0(0,m2,m3,M1; pi, pj),

DUV
11,0(0,m2,m3, 0; pi, pj)

NLL
=

4

3
(δi,0 + δj,0) ǫ−3

− (δi,t + δj,t)

(
4

3
Lǫ−2 +

2

3
L2ǫ−1 +

2

9
L3

)

(A.37)

have been subtracted. As a consequence of

∆D11,0(0,m2,m3,M4; pi, pj)
NLL
=

m2
2 + m2

3

2
∆D11,m(0,m2,m3,M4; pi, pj),

∆D11,0(M1,m2,m3, 0; pi, pj)
NLL
=

m2
2 + m2

3

2
∆D11,m(M1,m2,m3, 0; pi, pj), (A.38)

all terms proportional to the fermion masses in M̃11,ij
2 cancel.

Diagram 12.

M̃12,ijk
2 =

j

i

k

V1

V2

F
NLL
= M0

∑

V1,V2=A,Z,W±

I V̄2

i I V̄1

i IV1

j IV2

k D12(MV1
,MV2

; pi, pj , pk),

(A.39)

where the loop integral D12 is defined in (B.6) and yields

D12(M1,M2; pi, pj , pk)
NLL
=

1

2
L4 −

(

4 − 2lik +
4

3
l1 +

2

3
l2

)

L3,
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D12(0,M2; pi, pj , pk)
NLL
= (δi,0 + δj,0)

[

L2ǫ−2 + L3ǫ−1 +
7

12
L4

− (2−lik)

(

2Lǫ−2+L2ǫ−1+
1

3
L3

)

−l2

(

2Lǫ−2+3L2ǫ−1+
7

3
L3

)]

+ δi,t

[

−2

3
L3ǫ−1 − 5

6
L4 + (2 − 2lik + l2 + li) L2ǫ−1 +

(
2

3
− 2lik +

5

3
l2 +

5

3
li

)

L3

]

+ δj,t

[

−4

3
L3ǫ−1 − 7

3
L4 + (6 − 2lik − 2lij + 3l2 + lj)L2ǫ−1

+

(
26

3
− 2lik − 14

3
lij + 7l2 +

7

3
lj

)

L3

]

,

D12(M1, 0; pi, pj , pk)
NLL
= δk,0

[

−2

3
L3ǫ−1 − 2

3
L4 + (2 − lik)

(

2L2ǫ−1 +
4

3
L3

)

+l1

(

2L2ǫ−1+
8

3
L3

)]

+δk,t

[

5

6
L4−

(
16

3
− 10

3
lik+

8

3
l1+

2

3
lk

)

L3

]

,

D12(0, 0; pi, pj , pk)
NLL
= δi,0δj,0

{

δk,0

[
2ǫ−4 + (8 − 4lik) ǫ−3

]

+ δk,t

[

2

3
ǫ−4 − 4

3
Lǫ−3 − 2

3
L2ǫ−2 − 2

9
L3ǫ−1 − 1

18
L4 +

4

3
(2 − 2lik + lk) ǫ−3

− (4 − lik − lk)

(
4

3
Lǫ−2 +

2

3
L2ǫ−1 +

2

9
L3

)]}

+ δi,tδj,0

{

δk,0

[

1

2
ǫ−4 − Lǫ−3 +

1

3
L3ǫ−1 +

1

4
L4 + (2 − 2lik + li) ǫ−3 − (4 − 2lik)Lǫ−2

+ (lik − li)L2ǫ−1 +

(
4

3
+

1

3
lik − li

)

L3

]

+ δk,t

[

−Lǫ−3 − 1

3
L3ǫ−1 − 11

12
L4 −

(

lik − 1

2
li −

1

2
lk

)

ǫ−3 − (4 − 2lik) Lǫ−2

− (lik − li) L2ǫ−1 −
(

4

3
+ 3lik − 3li −

2

3
lk

)

L3

]}

+ δi,0δj,t

{

δk,0

[

4

3
ǫ−4 − 2

3
Lǫ−3 − 1

3
L2ǫ−2 − 1

9
L3ǫ−1 − 1

36
L4 +

(
16

3
− 2lik − 4

3
lij

+
2

3
lj

)

ǫ−3 −
(

4

3
− lik +

2

3
lij −

1

3
lj

)(

2Lǫ−2 + L2ǫ−1 +
1

3
L3

)]
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+ δk,t

[

1

2
ǫ−4 − Lǫ−3 +

1

3
L3ǫ−1 +

1

4
L4 +

(

2 − 5

3
lik − 1

3
lij +

1

6
lj +

5

6
lk

)

ǫ−3

−
(

4 − 4

3
lik − 2

3
lij +

1

3
lj −

1

3
lk

)

Lǫ−2 − 1

3
(lik − 4lij + 2lj + lk)L2ǫ−1

+

(
4

3
− 7

9
lik +

10

9
lij −

5

9
lj −

4

9
lk

)

L3

]}

+ δi,tδj,t

{

δk,0

[

−Lǫ−3 + L2ǫ−2 + 2L3ǫ−1 + 2L4 −
(

lij −
1

2
li −

1

2
lj

)

ǫ−3

− (4 − 4lik + 2li) Lǫ−2 + (4 + 2lik + 2lij − 5li − lj) L2ǫ−1

+

(

8 +
2

3
lik +

10

3
lij −

19

3
li −

5

3
lj

)

L3

]

+ δk,t

[

2L2ǫ−2 + 2L3ǫ−1 +
7

6
L4 + (2lik + 2lij − 2li − lj − lk) Lǫ−2

+(8−2lik+4lij−3li−2lj−lk)L
2ǫ−1+

(

8−4lik+
14

3
lij−

7

3
li−

7

3
lj

)

L3

]}

.

(A.40)

Here the UV singularities

DUV
12 (M1,m2; pi, pj , pk)

NLL
= −4L2ǫ−1 − 8

3
L3,

DUV
12 (0,m2; pi, pj , pk)

NLL
= −4 (δi,0 + δj,0) ǫ−3 + (δi,t + δj,t)

(

4Lǫ−2 + 2L2ǫ−1 +
2

3
L3

)

(A.41)

have been subtracted. While the above diagram, to NLL accuracy, does not depend on rij

and rjk for p2
j = 0, a dependency on rij is introduced for p2

j = m2
t .

Diagram 13.

M̃13,ijk
2 =

j

i

k

V2
V1

V3

F
NLL
= −i

g2

e
M0

∑

V1,V2,V3=A,Z,W±

εV1V2V3I V̄1

i I V̄2

j I V̄3

k

× D13(MV1
,MV2

,MV3
; pi, pj, pk), (A.42)

where the loop integral D13 is defined in (B.6). This integral is free of UV singularities

and yields

D13(M1,M2,M3; pi, pj , pk)
NLL
= 0,

D13(0,M2,M3; pi, pj , pk)
NLL
= (lij − lik)

[

δi,0

(

L2ǫ−1 +
5

3
L3

)

− 2

3
δi,tL

3

]

+
1

3
δi,t (l2 − l3) L3,
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D13(M1, 0,M3; pi, pj , pk) = D13(0,M3,M1; pj , pk, pi),

D13(M1,M2, 0; pi, pj , pk) = D13(0,M1,M2; pk, pi, pj). (A.43)

When one of the gauge bosons is a photon, it couples to two W bosons with equal masses,

so the terms with the mass-dependent logarithms l1, l2, l3 in (A.43) vanish in all physically

relevant cases.

Diagram 14.

M̃14,ijkl
2 =

i

j
k

l

V1

V2

F
NLL
= M0

∑

V1,V2=A,Z,W±

I V̄1

i IV1

j I V̄2

k IV2

l D14(MV1
,MV2

; pi, pj, pk, pl),

(A.44)

where the loop integral D14 is simply given by the product of one-loop integrals (A.3),

D14(MV1
,MV2

; pi, pj, pk, pl) = D0(MV1
; pi, pj)D0(MV2

; pk, pl). (A.45)

Sum of two-loop diagrams involving gauge interactions. The complete contribu-

tion of all factorizable diagrams not involving Yukawa contributions is obtained by inserting

the above results into (3.4). For the case of massless external fermions, we have explained

in detail in appendix E of ref. [32] how the factorizable two-loop diagrams can be summed

up to the total two-loop amplitude. To this purpose we have used relations between the

scalar loop integrals which are listed in appendix B of ref. [32] and are valid in NLL ap-

proximation. For the general case of diagrams with massive and massless fermions, these

relations receive only minor modifications which we indicate in appendix C of the present

paper. Apart from that, the whole procedure remains exactly the same. So here we only

present the result and refer to ref. [32] for more details.

The factorizable two-loop contributions can be written in the form

M̃F
2

NLL
= M0

{

1

2

[

FF,sew
1

]2
+ FF,sew

1 ∆FF,em
1 + FF,sew

1 ∆FF,Z
1

+
1

2

[

∆FF,em
1

]2
+ ∆FF,Z

1 ∆FF,em
1 + GF,sew

2 + ∆GF,em
2

}

, (A.46)

where the one-loop terms are given in (A.6). The additional two-loop terms read

e2GF,sew
2 =

1

2

n∑

i=1

[

b
(1)
1 g2

1

(
Yi

2

)2

+ b
(1)
2 g2

2Ci

]

J(ǫ,MW, Q2; pi, pi),

∆GF,em
2 =

1

2

n∑

i=1

Q2
i

{

b(1)
e

[
∆J(ǫ, 0, Q2; pi, pi) − ∆J(ǫ, 0,M2

W; pi, pi)
]

+ b
(1)
QED ∆J(ǫ, 0,M2

W; pi, pi)

}

, (A.47)
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with the one-loop β-function coefficients (4.5) and (4.6), the SU(2) Casimir operator (2.18),

and the two-loop functions

J(ǫ,m, µ2; pi, pj) =
1

ǫ

[

I(2ǫ,m; pi, pj) −
(

Q2

µ2

)ǫ

I(ǫ,m; pi, pj)

]

,

∆J(ǫ,m, µ2; pi, pj) = J(ǫ,m, µ2; pi, pj) − J(ǫ,MW, µ2; pi, pj), (A.48)

for m = MW,MZ, 0, which are combinations of one-loop functions I. The expres-

sions (A.47) rely on the fact that the J-function, to NLL accuracy, involves only the

LL parts of the I-function. In particular, no angular-dependent lij-terms are relevant for

the J-function, so the identity (4.20) yields

J(ǫ,m, µ2; pi, pj)
NLL
=

1

2

[

J(ǫ,m, µ2; pi, pi) + J(ǫ,m, µ2; pj, pj)
]

, (A.49)

and (4.21) can be generalized to the functions J and ∆J .

In order to combine the terms in (A.47) with (5.5) we use

− 1

ǫ

[(
Q2

µ2
R

)ǫ

− 1

]

I(ǫ,m; pi, pj) = J(ǫ,m, µ2
R; pi, pj) − J(ǫ,m,Q2; pi, pj) (A.50)

and a corresponding relation between ∆I and ∆J .

A.3 Yukawa diagrams

Most diagrams with scalar bosons coupling to external fermions are suppressed, as ex-

plained in section 3.2.3. The only relevant Yukawa contributions from bare diagrams are

presented in the following.

Yukawa diagram 1.

M̃Y,1,ij
2 =

i

j

V1

Φ2

F
NLL
= − 1

e2
M0

∑

V1=A,Z,W±

∑

Φ2=H,χ,φ±

Ĝ
Φ+

2

i GΦ2

i IV1

i I V̄1

j

× DY,1(MV1
,MΦ2

; pi, pj). (A.51)

The loop integral DY,1 is defined in (B.6) and yields

DY,1(m1,M2; pi, pj)
NLL
= DY(m1; pi, pj) (A.52)

with

DY(M1; pi, pj)
NLL
=

1

6
L3,

DY(0; pi, pj)
NLL
= (δi,0 + δj,0)

(
1

2
Lǫ−2 +

1

2
L2ǫ−1 +

1

3
L3

)

− δi,t

(
1

4
L2ǫ−1 +

1

4
L3

)

− δj,t

(
3

4
L2ǫ−1 +

17

12
L3

)

, (A.53)
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where the UV singularities

DUV
Y (M1; pi, pj)

NLL
=

1

2
L2ǫ−1 +

1

3
L3,

DUV
Y (0; pi, pj)

NLL
=

1

2
(δi,0 + δj,0) ǫ−3 − (δi,t + δj,t)

(
1

2
Lǫ−2 +

1

4
L2ǫ−1 +

1

12
L3

)

(A.54)

have been subtracted.

Yukawa diagram 2.

M̃Y,2,ij
2 =

i

j

V1

Φ2

F
NLL
= − 1

e2
M0

∑

V1=A,Z,W±

∑

Φ2=H,χ,φ±

Ĝ
Φ+

2

i ÎV1

i GΦ2

i I V̄1

j

× DY,2(MV1
,MΦ2

; pi, pj). (A.55)

The loop integral DY,2 is defined in (B.6) and yields

DY,2(m1,M2; pi, pj)
NLL
= −DY(m1; pi, pj) (A.56)

with DY(m1; pi, pj) from (A.53).

Yukawa diagram 3.

M̃Y,3,ij
2 =

i

j

Φ1

V3

Φ2F
NLL
=

1

e2
M0

∑

Φ1,Φ2=H,χ,φ±

Ĝ
Φ+

2

i GΦ1

i

∑

V3=A,Z,W±

I V̄3

j IV3

Φ1Φ2

× DY,3(MΦ1
,MΦ2

,MV3
; pi, pj). (A.57)

The loop integral DY,3 is defined in (B.6) and yields

DY,3(M1,M2,m3; pi, pj)
NLL
= −DY(m3; pi, pj) (A.58)

with DY(m3; pi, pj) from (A.53).

B. Definition of the loop integrals

In this appendix, we list the explicit expressions for the Feynman integrals that contribute

to the one- and two-loop diagrams discussed in appendix A. In order to keep our expres-

sions as compact as possible we define the momenta

k1 = pi + l1, k2 = pi + l2, k3 = pi + l1 + l2,

q1 = pj − l1, q2 = pj − l2, q3 = pj − l1 − l2, l3 = −l1 − l2,

r1 = pk − l1, r2 = pk − l2, r3 = pk − l1 + l2, l4 = l1 − l2. (B.1)
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For propagators with mass m we use the notation

P (q,m) = q2 − m2 + i0 (B.2)

and for triple gauge-boson couplings we write

Γµ1µ2µ3(l1, l2, l3) = gµ1µ2(l1 − l2)
µ3 + gµ2µ3(l2 − l3)

µ1 + gµ3µ1(l3 − l1)
µ2 . (B.3)

The normalization factors occurring in (2.9) are absorbed into the integration measure

dl̃i = (4π)2
(

4πµ2
D

eγEQ2

)D/2−2

µ4−D
D

dDli

(2π)D
=

1

π2

(
eγEQ2π

)2−D/2
dDli, (B.4)

and for the projection introduced in (3.12) we use the equality

Πij (ωκi
Γ) =

1

2
Πij (Γ) , (B.5)

which holds if Γ does not involve γ5 or ωR,L, as it is the case in the following equations. We

have explicitly verified that the NLL contributions from the projector Π̃ij in (3.13) cancel.

The integral functions Dh depend on the internal masses m1,m2, . . . and, through the

momenta pi, pj, . . ., on the kinematical invariants rij and on the masses m2
i = p2

i of the

external particles. The definition of these integrals also involves the masses m′
i,m

′′
i ,m

′′′
i

of the particles ϕ′
i, ϕ

′′
i , ϕ

′′′
i along the fermionic line i after one, two or three interactions

with gauge bosons or scalar bosons, which possibly change the weak isospin of the external

particle ϕi. We have found, however, that the dependence of the results on the masses along

the fermionic lines is completely fixed by the external masses mi, so we do not indicate the

additional masses m′
i, . . . in the arguments of the functions Dh.

With this notation we have

D0(m1; pi, pj) =

∫

dl̃1
4ik1q1

P (l1,m1)P (k1,m
′
i)P (q1,m

′
j)

,

D1(m1,m2; pi, pj) =

∫

dl̃1dl̃2

× −16(k1q1)(k3q3)

P (l1,m1)P (l2,m2)P (k1,m′
i)P (k3,m′′

i )P (q1,m′
j)P (q3,m′′

j )
,

D2(m1,m2; pi, pj) =

∫

dl̃1dl̃2

× −16(k1q3)(k3q2)

P (l1,m1)P (l2,m2)P (k1,m
′
i)P (k3,m

′′
i )P (q2,m

′
j)P (q3,m

′′
j )

,

D3(m1,m2,m3; pi, pj)=

∫

dl̃1dl̃2

× −2Πij [(/k3 + m′′
i )γ

µ2(/k1 + m′
i)γ

µ1 ] qµ3

3 Γµ1µ2µ3
(l1, l2, l3)

P (l1,m1)P (l2,m2)P (l3,m3)P (k1,m′
i)P (k3,m′′

i )P (q3,m′
j)

,

D4(m1,m2; pi, pj) =

∫

dl̃1dl̃2
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×
2Πij

[

(/k1 + m′
i)γ

µ2(/k3 + m′′
i )γµ2

(/k1 + m′
i)/q1

]

P (l1,m1)P (l2,m2) [P (k1,m′
i)]

2 P (k3,m′′
i )P (q1,m′

j)
,

D5(m1,m2; pi, pj) =

∫

dl̃1dl̃2

×
2Πij

[

(/k1 + m′′′
i )γµ2(/k3 + m′′

i )/q1
(/k2 + m′

i)γµ2

]

P (l1,m1)P (l2,m2)P (k1,m′′′
i )P (k3,m′′

i )P (k2,m′
i)P (q1,m′

j)
,

D6(m1,m2,m3,m4; pi, pj)=

∫

dl̃1dl̃2

× −4kµ1

1 q1µ4
[Γµ1µ2µ3

(l1, l2, l3)Γ
µ4µ2µ3(l1, l2, l3) + 2l2µ1

lµ4

3 ]

P (l1,m1)P (l2,m2)P (l3,m3)P (l1,m4)P (k1,m′
i)P (q1,m′

j)
,

D7(m1,m2,m3; pi, pj) =

∫

dl̃1dl̃2
−4k1q1

P (l1,m1)P (l2,m2)P (l1,m3)P (k1,m′
i)P (q1,m′

j)
,

D8(m1,m2,m3,m4; pi, pj)=

∫

dl̃1dl̃2

× −4k1q1

P (l1,m1)P (l2,m2)P (l3,m3)P (l1,m4)P (k1,m
′
i)P (q1,m

′
j)

,

D9(m1,m2,m3,m4; pi, pj) =

∫

dl̃1dl̃2

× 4kµ1

1 qµ4

1 (l2 − l3)µ1
(l2 − l3)µ4

P (l1,m1)P (l2,m2)P (l3,m3)P (l1,m4)P (k1,m′
i)P (q1,m′

j)
,

D10(m1,m2,m3; pi, pj) = D7(m1,m2,m3; pi, pj),

D11,0(m1,m2,m3,m4; pi, pj)=

∫

dl̃1dl̃2

× 4kµ1

1 qµ4

1 Tr
(
γµ1

/l2γµ4
/l3

)

P (l1,m1)P (l2,m2)P (l3,m3)P (l1,m4)P (k1,m′
i)P (q1,m′

j)
,

D11,m(m1,m2,m3,m4; pi, pj)=−4D8(m1,m2,m3,m4; pi, pj),

D12(m1,m2; pi, pj, pk) =

∫

dl̃1dl̃2

× −16(k1q1)(k3r2)

P (l1,m1)P (l2,m2)P (k1,m′
i)P (k3,m′′

i )P (q1,m′
j)P (r2,m′

k)
,

D13(m1,m2,m3; pi, pj, pk) =

∫

dl̃1dl̃2

× 8kµ1

1 qµ2

2 rµ3

3 Γµ1µ2µ3
(−l1, l2, l4)

P (l1,m1)P (l2,m2)P (l4,m3)P (k1,m′
i)P (q2,m′

j)P (r3,m′
k)

,

D14(m1,m2; pi, pj, pk, pl) = D0(m1; pi, pj)D0(m2; pk, pl),

DY,1(m1,m2; pi, pj) =

∫

dl̃1dl̃2

×
−2Πij

[

(/k1 + m′
i)(/k3 + m′′

i )(/k1 + m′
i)/q1

]

P (l1,m1)P (l2,m2) [P (k1,m′
i)]

2 P (k3,m′′
i )P (q1,m′

j)
,
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DY,2(m1,m2; pi, pj) =

∫

dl̃1dl̃2

×
−2Πij

[

(/k1 + m′′′
i )(/k3 + m′′

i )/q1
(/k2 + m′

i)
]

P (l1,m1)P (l2,m2)P (k1,m′′′
i )P (k3,m′′

i )P (k2,m′
i)P (q1,m′

j)
,

DY,3(m1,m2,m3; pi, pj) =

∫

dl̃1dl̃2

× 2Πij [(/k3 + m′′
i )(/k1 + m′

i)] q3l4
P (l1,m1)P (l2,m2)P (l3,m3)P (k1,m

′
i)P (k3,m

′′
i )P (q3,m

′
j)

.

(B.6)

The previous definitions are valid for diagrams with incoming fermions. In the case of an

incoming antifermion ϕi, all masses mi,m
′
i, . . . along the fermionic line i have to be multi-

plied by (−1), in the integral definitions (B.6) as well as in the projectors (3.12). But as

mentioned in sections 2.2 and 3.2.2, the NLL results are insensitive to this transformation.

The various coupling matrices IV
k and GΦ

k , which are associated with the interactions

along the fermionic lines k = i, j, . . . , have been factorized from the loop integrals and

can be found in appendix A. Here a comment is in order since, in principle, the fermion-

mass terms in the numerator flip the chirality of the fermions and give rise to coupling

matrices ÎV
k and ĜΦ

k corresponding to opposite chirality states [see (2.29)]. However, as

discussed in appendix A for the case of diagrams 4 and 5 [see text after (A.17)], we have

found that the fermion-mass terms in the numerator are only relevant in the case of photon

interactions, where the representations of the generators are independent of the chiralities,

i.e. ÎA
k = IA

k . Thus, all contributions can be expressed in terms of the operators IV
k , which

belong to the representations associated with the chiralities κk of the external fermions,

and all coupling factors can be factorized as in appendix A.

C. Relations between loop integrals in NLL approximation

In order to combine the two-loop contributions of section A.2 we use relations between

the loop integrals. These relations have been obtained from the explicit results listed

in sections A.1 and A.2. They are valid after subtraction of the UV singularities and in

NLL approximation.

For the case of massless fermionic particles, the relevant relations have been listed in

appendix B of ref. [32]. We have found that, after only small modifications, they are all

still valid for the case of massive fermionic particles. One trivial and obvious modification

is the following change of arguments in the integral functions Dh:

Dh(. . . ; rij) → Dh(. . . ; pi, pj), for D1, . . . ,D10,D11,0,D11,m, (C.1)

and similarly for the subtracted functions ∆Dh defined in (A.1). Many relations do not

need further modifications, and we refer to appendix B of ref. [32] for them.

However, since the presence of fermion masses breaks the invariance of some dia-

grams with respect to an exchange of external or internal lines, certain relations ob-

tained for massless fermions have to be modified by an appropriate reordering of argu-

ments in the Dh-functions. We list these relations in the following. As in appendix A,
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the symbols mi are used to denote generic mass parameters, which can assume the values

mi = MW,MZ,mt,MH or mi = 0, and the symbols Mi are used to denote non-zero masses,

i.e. Mi = MW,MZ,mt,MH.

In the second line of (B.2) in ref. [32] the arguments pi, pj have to be exchanged on

the right-hand side. This relation becomes

D2(m1,m2; pi, pj) = D2(m2,m1; pj , pi). (C.2)

In the relations (B.3) of ref. [32] the order of the mass parameters in D2 has to be

reversed, and the order of the momenta in the 3-leg integral D12 is now important:

D3(M1,m2,m3; pi, pj)
NLL
=

1

2
D2(M1,m3; pi, pj) − D4(m3,M1; pi, pj)

− 6D9(m3,M1,M1,m3; pi, pj),

∆D3(MW,MW,m1; pi, pj)
NLL
=

1

2
∆D12(MW,m1; pi, pk, pj) − ∆D4(m1,MW; pi, pj)

− 6∆D9(m1,MW,MW,m1; pi, pj),

∆D3(m1,MW,MW; pi, pj)
NLL
= ∆D3(MW,m1,MW; pi, pj) + ∆D1(MW,m1; pi, pj)

+ ∆D2(m1,MW; pi, pj) + ∆D4(MW,m1; pi, pj)

− 1

2
∆D12(MW,m1; pj , pk, pi). (C.3)

As in ref. [32], the first of these relations has been verified and is needed only if at most

one of the masses m2 and m3 is zero.

The functions J and ∆J defined in (A.48) of this paper now also depend on the external

momenta pi, pj , and (B.6) and (B.7) of ref. [32] become

3D9(M1,M2,M3,M4; pi, pj)
NLL
= −J(ǫ,MW, Q2; pi, pj),

3∆D9(0,M2,M3, 0; pi, pj)
NLL
= −

[
∆J(ǫ, 0, Q2; pi, pj) − ∆J(ǫ, 0,M2

W; pi, pj)
]
,

3
[

∆D11,0(0, 0, 0, 0; pi , pj) − ∆D11,0(0,M2,M3, 0; pi, pj)
]

NLL
= −4∆J(ǫ, 0,M2

W; pi, pj).

(C.4)

For the 3-leg integrals the order of the external momenta pi, pj , pk becomes relevant

and (B.8), (B.9) and (B.10) of ref. [32] generalize to

D12(m1,m2; pi, pj , pk) + D12(m2,m1; pi, pk, pj)
NLL
= D0(m1; pi, pj)D0(m2; pi, pk),

∑

π(i,j,k)

sgn(π(i, j, k))D12(M1,M2; pi, pj, pk)
NLL
= 0, (C.5)

where the sum runs over all permutations π(i, j, k) of i, j, k, with sign sgn(π(i, j, k)), and

D13(M1,M2,M3; pi, pj, pk)
NLL
= 0,

2∆D13(M1,M1,m3; pi, pj, pk) = 2∆D13(m3,M1,M1; pk, pi, pj)

= 2∆D13(M1,m3,M1; pj, pk, pi)
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NLL
= ∆D12(MW,m3; pj , pi, pk)−∆D12(MW,m3; pi, pj , pk).

(C.6)

When fermion masses are involved, the last relation is only true (and only needed) if the

two non-zero gauge-boson masses M1 on the left-hand side are equal.

We have found that the relations from appendix B of ref. [32], together with the modifi-

cations presented above, are exactly the ones needed to combine the two-loop contributions

of section A.2 into the complete amplitude (see end of appendix A).

D. Application to four-particle processes

Here we apply our results to four-particle processes involving light fermions, heavy fermions

and gluons. We first examine four-fermion processes

ϕ1(p1)ϕ2(p2) → ϕ3(−p3)ϕ4(−p4), (D.1)

where each of the ϕi may be a fermion, ϕi = fκi
σi

, or antifermion, ϕi = f̄κi
σi

, with the

notations from section 2, provided that the number of fermions and antifermions in the

initial and final state is equal. We exclude top quarks from the initial state, ϕ1,2 6= t, t̄, but

allow for bottom quarks there. The final state may contain any combination of massless

or massive fermions and antifermions, including top and bottom quarks.

The scattering amplitudes for the processes (D.1) follow directly from our results for

the generic n → 0 process (2.1) by crossing symmetry, and the Mandelstam invariants are

given by s = r12 = r34, t = r13 = r24, and u = r14 = r23 with rij = (pi + pj)
2. In practice

we can restrict ourselves to the calculation of s-channel amplitudes fκ1
σ1

f̄κ2
σ2

→ fκ3
σ3

f̄κ4
σ4

, i.e.

amplitudes where the external fermion lines are connected between fκ1
σ1

and f̄κ2
σ2

in the

initial state and between fκ3
σ3

and f̄κ4
σ4

in the final state. All other scattering amplitudes

needed for the four-fermion processes can be obtained from the s-channel amplitudes by

crossing symmetry.

In section D.1 we treat neutral-current four-fermion amplitudes where the particle

pairs in the initial and final state are antiparticles of each other. Section D.2 is devoted

to charged-current four-fermion amplitudes where the initial and final state each consist

of a pair of isospin partners. Finally, in section D.3 we provide results for the annihilation

of two gluons into a fermion pair, g g → fκ
σ f̄κ

σ . All other four-particle processes involving

two gluons and two (anti)fermions, i.e. g fκ
σ → g fκ

σ , fκ
σ f̄κ

σ → g g, etc., are related to

g g → fκ
σ f̄κ

σ by crossing symmetry.

In order to keep all results manifestly invariant with respect to crossing symmetry, we

keep the hard scale Q2, which enters the logarithms L = ln(Q2/M2
W), as a free parameter.

In practical applications, Q2 can be identified with the centre-of-mass energy s or, alter-

natively, with |t| or |u|. This implies an ambiguity of NNLL order, which corresponds to

the intrinsic error of the NLL approximation.

We present the results in the factorized form (5.18), using the notation

MX
NLL
= M0,X(Q2) f sew

X fZ
X f em

X , (D.2)
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where X denotes a specific process. In particular we separate the finite parts of the correc-

tions, f sew
X and fZ

X , from the subtracted electromagnetic part f em
X . The latter contains all

soft/collinear 1/ǫ poles that must be cancelled against real photon emission or, in the case

of initial-state singularities, factorized. In f sew
X and fZ

X we will omit contributions of O(ǫ)

and O(ǫ2), since such terms are irrelevant after cancellation of the photonic soft/collinear

singularities. The electromagnetic contributions f em
X have the general form

f em
X

NLL
= 1 +

αǫ

4π
∆f em

1,X +
(αǫ

4π

)2
[
1

2

(
∆f em

1,X

)2
+ ∆gem

2,X

]

(D.3)

with

∆f em
1,X

NLL
= −

(

2ǫ−2 − L2 − 2

3
L3ǫ − 1

4
L4ǫ2 + 3ǫ−1 + 3L +

3

2
L2ǫ +

1

2
L3ǫ2

)

Cem
1,X,0

+

(

ǫ−1 + L +
1

2
L2ǫ +

1

6
L3ǫ2

)[

2 (L − 1 − lt) Cem
1,X,t − Cad,em

1,X

]

+ O(ǫ3),

∆gem
2,X

NLL
=

{

lµR

[

−2ǫ−2 − (2L − lµR
) ǫ−1 + lµR

L − 1

3
l2µR

]

b(1)
e

+

(
3

2
ǫ−3 + 2Lǫ−2 + L2ǫ−1

)

b
(1)
QED

}

Cem
1,X,0 +

[

lµR

(
2Lǫ−1 + 4L2 − lµR

L
)
b(1)
e

−
(
Lǫ−2 + 2L2ǫ−1 + 2L3

)
b
(1)
QED

]

Cem
1,X,t + O(ǫ), (D.4)

and the factors Cem
1,X,0, C

em
1,X,t, C

ad,em
1,X , which depend on the charges and masses of the ex-

ternal particles, are given in the next sections. The values for the β-function coefficients

b
(1)
e and b

(1)
QED can be found in (4.5) and (4.6).

D.1 Neutral-current four-fermion scattering

This section deals with s-channel neutral-current four-fermion amplitudes

fκ
σ f̄κ

σ → fκ′

σ′ f̄κ′

σ′ , (D.5)

where a fermion-antifermion pair annihilates and produces another fermion-antifermion

pair. The Born diagram of such an amplitude is given by

A,Z

fκ
σ

f̄κ
σ

fκ′

σ′

f̄κ′

σ′

.

We allow for top quarks only in the final state. Both particles of the initial state must

share the same chirality κ, and both particles of the final state must have the same chi-

rality κ′, otherwise the amplitude is suppressed in NLL accuracy. The electromagnetic

charge quantum numbers of the external particles are given by qf = qfκ
σ

= −qf̄κ
σ

and

qf ′ = q
fκ′

σ′
= −q

f̄κ′

σ′
, the hypercharges by yf = yfκ

σ
= −yf̄κ

σ
and yf ′ = y

fκ′

σ′
= −y

f̄κ′

σ′
,
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the isospin components by t3f = t3fκ
σ

= −t3
f̄κ

σ
and t3f ′ = t3

fκ′

σ′

= −t3
f̄κ′

σ′

, and the isospin by

tf = |t3f |, tf ′ = |t3f ′ |. We use zY
f and zY

f ′ to denote the Yukawa factors (4.11) of the initial-

and final-state particles, respectively.

The amplitude can be written in the factorized form (5.18),

MNC
NLL
= M0,NC(Q2) f sew

NC fZ
NC f em

NC . (D.6)

The Born amplitude combined with the (non-diagonal) symmetric-electroweak contribution

f sew
NC (5.23) reads

M0,NC(Q2) f sew
NC

NLL
=

1

s
v̄(p2, κ)γµu(p1, κ) ū(−p3, κ

′)γµv(−p4, κ
′)

{

C0,NC

+
αǫ

4π

[

−C0,NC

(

(
L2 − 3L

)
Csew

1,NC + Lt
λ2

t

2e2

(
zY
f + zY

f ′

)

)

+ LCad
1,NC

]

+
(αǫ

4π

)2
[

C0,NC

((
1

2
L4 − 3L3

)
(
Csew

1,NC

)2
+ L2Lt

λ2
t

2e2

(
zY
f + zY

f ′

)
Csew

1,NC + gsew
2,NC

)

−L3 Cad
1,NC Csew

1,NC

]}

+ O(ǫ), (D.7)

where the Born term

C0,NC = g2
1(Q

2)
yfyf ′

4
+ g2

2(Q
2) t3f t3f ′ (D.8)

is written in terms of couplings gi(Q
2) renormalized at the scale Q, whereas αǫ and the

other couplings and mixing angles in the loop corrections are renormalized at the scale µR.

The remaining terms in (D.7) read

Csew
1,NC =

g2
1

e2

y2
f

4
+

g2
2

e2
tf (tf + 1) + (f ↔ f ′),

Cad
1,NC = C0,NC

[

4 ln
(u

t

)(g2
1

e2

yfyf ′

4
+

g2
2

e2
t3f t3f ′

)

− 2 ln

(−s

Q2

)

Csew
1,NC

]

+ 2g2
2(Q

2)
g2
2

e2

[

ln
(u

t

)

tf tf ′ −
(

ln

(
t

s

)

+ ln
(u

s

)
)

t3f t3f ′

]

,

gsew
2,NC

NLL
=

(
1

3
L3 − lµR

L2

)[

b
(1)
1

g2
1

e2

y2
f

4
+ b

(1)
2

g2
2

e2
tf (tf + 1) + (f ↔ f ′)

]

+ O(ǫ). (D.9)

The values for the β-function coefficients b
(1)
1 , b

(1)
2 are given in (4.5). The symmetric-

electroweak result (D.7) is multiplied with the diagonal factors

fZ
NC

NLL
= 1 +

αǫ

4π
2L lZ

[(g2

e
cWt3f − g1

e
sW

yf

2

)2
+ (f ↔ f ′)

]

+ O(ǫ) (D.10)

and f em
NC. The latter is obtained from (D.3)–(D.4) with

Cem
1,NC,0 = q2

f + δf ′,0 q2
f ′ , Cem

1,NC,t = δf ′,t q2
t ,
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Cad,em
1,NC = 4 ln

(u

t

)

qfqf ′ − 2 ln

(−s

Q2

)
(
q2
f + q2

f ′

)
, (D.11)

where qt = 2/3, and the symbols

δf ′,t =

{

1, fσ′ = t

0, fσ′ 6= t

}

, δf ′,0 = 1 − δf ′,t (D.12)

are used to distinguish between massive and massless fermions in the final state.

Note that only the electromagnetic contributions f em
NC depend on the fermion masses.

The remaining contributions are simply complemented by the Yukawa contributions pro-

portional to λ2
t in (D.7), otherwise they are equal to our results for massless fermions

presented in section 8.4.1 of ref. [32].

D.2 Charged-current four-fermion scattering

In this section we treat s-channel charged-current four-fermion amplitudes fκ
σ f̄λ

ρ → fκ
σ′ f̄λ

ρ′ ,

where the fermions fσ and fσ′ are the isospin partners of fρ and fρ′ , respectively. We allow

for a top-antibottom or bottom-antitop pair both in the initial and final state because

the s-channel amplitude t b̄ → t b̄ arises via crossing symmetry as a contribution to the

process b b̄ → t t̄.

For s-channel amplitudes with purely left-handed external fermions,

fL
σ f̄L

ρ → fL
σ′ f̄L

ρ′ , (D.13)

the Born diagram involves the exchange of a W boson:

W±

fL
σ

f̄L
ρ

fL
σ′

f̄L
ρ′

.

Most of the other combinations of chiralities for the external fermions yield contributions

which are suppressed in NLL accuracy. The only exception is the s-channel amplitude

tR b̄L → tR b̄L (D.14)

or, via crossing symmetry, bL t̄R → bL t̄R, where the exchange of a φ± scalar boson in the

Born diagram produces a non-suppressed contribution with right-handed top quarks:

φ+

tR

b̄L

tR

b̄L

.

We start with the fully left-handed amplitude (D.13). The hypercharge quantum

numbers of the external particles are given by yf = yfL
σ

= −yf̄L
ρ

and yf ′ = yfL

σ′
= −yf̄L

ρ′
,
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the isospin components by t3 = t3
fL

σ
= t3

f̄L
ρ

= t3
fL

σ′
= t3

f̄L

ρ′
, and for left-handed fermions

|t3| = 1/2. The Yukawa factors (4.11) of the initial- and final-state particles are denoted

by zY
f = zY

fL
σ

= zY
f̄L

ρ
and zY

f ′ = zY
fL

σ′
= zY

f̄L

ρ′
, respectively.

As in the previous section, the amplitude (D.13) is written in the form

MCC
NLL
= M0,CC(Q2) f sew

CC fZ
CC f em

CC . (D.15)

Combining the Born amplitude with the (non-diagonal) symmetric-electroweak contribu-

tion f sew
NC (5.23), we find

M0,CC(Q2) f sew
CC

NLL
=

1

s
v̄(p2,L)γµu(p1,L) ū(−p3,L)γµv(−p4,L)

{

g2
2(Q

2)

2

+
αǫ

4π

[

−g2
2(Q

2)

2

(

(
L2 − 3L

)
Csew

1,CC + Lt
λ2

t

2e2

(
zY
f + zY

f ′

)

)

+ LCad
1,CC

]

+
(αǫ

4π

)2
[

g2
2(Q

2)

2

((
1

2
L4 − 3L3

)
(
Csew

1,CC

)2
+ L2Lt

λ2
t

2e2

(
zY
f + zY

f ′

)
Csew

1,CC + gsew
2,CC

)

−L3 Cad
1,CC Csew

1,CC

]}

+ O(ǫ) (D.16)

with

Csew
1,CC =

g2
1

e2

y2
f + y2

f ′

4
+

3

2

g2
2

e2
,

Cad
1,CC =

g2
2(Q

2)

2

[

4 ln
(u

t

) g2
1

e2

yfyf ′

4
− 2

(

ln

(
t

s

)

+ ln
(u

s

)
)

g2
2

e2
− 2 ln

(−s

Q2

)

Csew
1,CC

]

+ 2 ln
(u

t

)

g2
1(Q

2)
yfyf ′

4

g2
2

e2
,

gsew
2,CC

NLL
=

(
1

3
L3 − lµR

L2

)(

b
(1)
1

g2
1

e2

y2
f + y2

f ′

4
+

3

2
b
(1)
2

g2
2

e2

)

+ O(ǫ). (D.17)

The MZ-dependent correction factor reads

fZ
CC

NLL
= 1 +

αǫ

4π
L lZ

(

g2
2

e2
c2
W

+ 2
g2
1

e2
s2

W

y2
f + y2

f ′

4

)

+ O(ǫ), (D.18)

and the electromagnetic factor f em
CC is obtained from (D.3)–(D.4) with

Cem
1,CC,0 =

1

2

[

δf,0

(

q2
fL

σ
+ q2

f̄L
ρ

)

+ δf ′,0

(

q2
fL

σ′
+ q2

f̄L

ρ′

)

+
(
δf,t + δf ′,t

)
q2
b

]

=

[

δf,0

(

g2
1

e2
c2
W

y2
f

4
+

1

4

g2
2

e2
s2

W

)

+
1

2
δf,t q2

b + (f ↔ f ′)

]

,

Cem
1,CC,t =

1

2

(
δf,t + δf ′,t

)
q2
t ,
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Cad,em
1,CC = 2

[

ln

(−s

Q2

)(

qfL
σ
qf̄L

ρ
+ qfL

σ′
qf̄L

ρ′

)

− ln

(−t

Q2

)(

qfL
σ
qfL

σ′
+ qf̄L

ρ
qf̄L

ρ′

)

− ln

(−u

Q2

)(

qfL
σ
qf̄L

ρ′
+ qfL

σ′
qf̄L

ρ

)
]

= 4 ln
(u

t

) g2
1

e2
c2
W

yfyf ′

4
−
(

ln

(
t

s

)

+ ln
(u

s

)
)

g2
2

e2
s2

W

− 2 ln

(−s

Q2

)(

g2
1

e2
c2
W

y2
f + y2

f ′

4
+

1

2

g2
2

e2
s2

W

)

, (D.19)

where qt = 2/3, qb = −1/3, and the symbols

δf,t =

{

1, fσ = t or fρ = t

0, otherwise

}

, δf,0 = 1 − δf,t (D.20)

and similarly for f → f ′, fσ → fσ′ , fρ → fρ′ are used to distinguish between massive and

massless fermions.

Again only the dependence of the electromagnetic contributions f em
CC on the fermion

masses and the Yukawa terms in (D.16) are new compared with our results for massless

fermions in section 8.4.2 of ref. [32].

Now we present the results for the s-channel amplitude tR b̄L → tR b̄L (D.14) which

contributes via crossing symmetry to the process bL b̄L → tR t̄R. We need the hypercharges

ytR = 4/3, ybL = 1/3 and the Yukawa factors zY
tR

= 2, zY
bL = 1. The amplitude reads

MCCY
NLL
= M0,CCY(Q2) f sew

CCY fZ
CCY f em

CCY (D.21)

and is expressed through

M0,CCY(Q2) f sew
CCY

NLL
= −λ2

t (Q
2)

s
v̄(p2,L)u(p1,R) ū(−p3,R)v(−p4,L)

{

1

+
αǫ

4π

[

−
(
L2 − 3L

)
Csew

1,CCY − Lt
λ2

t

2e2

(
zY
tR + zY

bL

)
+ LCad

1,CCY

]

+
(αǫ

4π

)2
[(

1

2
L4 − 3L3

)
(
Csew

1,CCY

)2
+ L2Lt

λ2
t

2e2

(
zY
tR + zY

bL

)
Csew

1,CCY + gsew
2,CCY

−L3 Cad
1,CCY Csew

1,CCY

]}

+ O(ǫ) (D.22)

with

Csew
1,CCY =

g2
1

e2

y2
tR

+ y2
bL

4
+

3

4

g2
2

e2
,

Cad
1,CCY = 4 ln

(u

s

) g2
1

e2

ytRybL

4
− 2 ln

(−t

Q2

)

Csew
1,CCY ,
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gsew
2,CCY

NLL
=

(
1

3
L3 − lµR

L2

)(

b
(1)
1

g2
1

e2

y2
tR

+ y2
bL

4
+

3

4
b
(1)
2

g2
2

e2

)

+ O(ǫ) (D.23)

and the MZ-dependent factor

fZ
CCY

NLL
= 1 +

αǫ

4π
2L lZ

[

g2
1

e2
s2

W

y2
tR

4
+

(
1

2

g2

e
cW +

g1

e
sW

ybL

2

)2
]

+ O(ǫ). (D.24)

The electromagnetic correction factor f em
CCY is obtained from (D.3)–(D.4) with

Cem
1,CCY,0 = q2

b, Cem
1,CCY,t = q2

t ,

Cad,em
1,CCY = 4 ln

(u

s

)

qtqb − 2 ln

(−t

Q2

)
(
q2
t + q2

b

)
. (D.25)

D.3 Annihilation of two gluons into a fermion pair

This section completes the four-particle processes by amplitudes with two gluons in the

initial state. The process

g g → fκ′

σ′ f̄κ′

σ′ (D.26)

involves three diagrams at Born level,

g

g

fκ′

σ′

f̄κ′

σ′

+

g

g

fκ′

σ′

f̄κ′

σ′

+

g

g

fκ′

σ′

f̄κ′

σ′

,

and the corresponding Born amplitude in the high-energy limit reads

M0,gf = −g2
s εµ(p1)εν(p2) ū(−p3, κ

′) ×
{

i

s
fabctc

[

gµν(p1 − p2)
ρ + gνρ(p1 + 2p2)

µ − gρµ(2p1 + p2)
ν
]

γρ

+
1

t
tatb γµ(/p2

+ /p4
)γν +

1

u
tbta γν(/p1

+ /p4
)γµ

}

v(−p4, κ
′), (D.27)

where gs is the strong coupling, εµ(p1,2) are the polarization vectors of the initial-state

gluons with colour indices a and b, ta are the generators of the QCD SU(3) gauge group,

and fabc are the corresponding structure constants.

As discussed in section 6, our NLL results for n-fermion processes can be applied also to

QCD processes involving fermions and gluons. The NLL amplitude for the process (D.26)

assumes the usual factorized form,

Mgf
NLL
= M0,gf f sew

gf fZ
gf f em

gf , (D.28)

and the presence of the gluons affects only the factorized Born amplitude M0,gf . The NLL

correction factors f sew
gf , fZ

gf , and f em
gf are obtained from the general results of section 4
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and section 5 by treating the reaction (D.26) as a 0 → 2 process, in the sense that the NLL

correction factors receive contributions only from the final-state fermions.

The symmetric-electroweak operator f sew
gf is diagonal for this process,

f sew
gf

NLL
= 1 − αǫ

4π

{[

L2 − 3L + 2L ln

(−s

Q2

)]

Csew
1,gf + Lt

λ2
t

2e2
zY
f ′

}

+
(αǫ

4π

)2
{[

1

2
L4 − 3L3 + 2L3 ln

(−s

Q2

)]
(
Csew

1,gf

)2
+ L2Lt

λ2
t

2e2
zY
f ′ Csew

1,gf + gsew
2,gf

}

+ O(ǫ), (D.29)

and simply multiplies the Born amplitude (D.27). The terms Csew
1,gf and gsew

2,gf used here as

well as the two other correction factors fZ
gf and f em

gf can be obtained from the corresponding

results (D.9)–(D.11) of the neutral-current four-fermion amplitude in section D.1 by setting

all electroweak quantum numbers of the initial-state fermions (yf , t3f , tf , qf ) to zero, keeping

only the final-state quantum numbers yf ′ , t3f ′ , tf ′ , qf ′ .

D.4 Comparison with effective field-theory results

The four-fermion amplitudes presented in this appendix can be compared with the results

of refs. [24, 25] based on soft-collinear effective theory (SCET). To this end we have to

use the results in section VII of ref. [25], omitting QCD contributions. We have found

agreement at NLL accuracy for the symmetric-electroweak and MZ-dependent parts of

our results.

In the SCET framework, the full electroweak theory is matched at the high scale

µ = Q to an effective theory SCETEW where the degrees of freedom above the scale Q

are integrated out. In NLL accuracy, only the tree-level expressions of the corresponding

matching coefficients are relevant. These matching coefficients are evolved from the scale

µ = Q down to the scale µ = MW using anomalous-dimension matrices calculated in

SCETEW. This step yields LL and NLL contributions which agree with the symmetric-

electroweak parts f sew
NC (D.7) and f sew

CC (D.16) of the neutral- and charged-current amplitudes

presented here. At the low scale µ = MW, SCETEW is matched to another effective theory

SCETγ where the massive gauge bosons are integrated out. The loop corrections resulting

from this second matching agree with the factors fZ
NC (D.10) and fZ

CC (D.18) arising in our

calculation from the difference in the W- and Z-boson masses.

Finally, the matching coefficients in SCETγ are evolved down to some finite scale

µ0 < MW (µ0 = 30GeV for the numerics in ref. [25]), which acts as a cut-off for the

singular contributions due to soft and collinear photons. Due to the different regularization

employed in our calculation these contributions cannot directly be compared with our

electromagnetic factors f em
NC and f em

CC.

In addition to the results of ref. [25], our analysis in section D.2 also includes the

charged-current t-channel amplitude for the process b b̄ → t t̄ and, in particular, the tree-

level exchange of a scalar boson in the case of right-handed top quarks.

Our results concerning four-particle processes with two gluons and two quarks

in section D.3 are in agreement with the comments on these reactions in ref. [25].
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